# Industrial Energy Efficiency Activities in West Virginia

Bhaskaran Gopalakrishnan, PhD, PE, CEM, CPEnMS, LEED GA Professor and Director of Industrial Assessment Center Industrial and Management Systems Engineering Statler College of Engineering and Mineral Resources West Virginia University Morgantown, WV 26506 http://www2.statler.wvu.edu/~gopal/



## Sustainability

### Development which meets the needs of the present without compromising the ability of future generations to meet their own needs"

**UN Brundtland Commission** 





## Sustainability

#### The Three Spheres of Sustainability





ACEEE - "Energy efficiency is easily the most affordable energy resource. The combination of supply side efficiency improvements and those by CHP technologies and efficiency improvement in industrial, commercial, and residential sectors would save taxpayers a significant amount of money over the next two decades"



# US Energy Efficiency supply curve

The width of each column represents the amount of efficiency potential in **TBTU** found in that group of measures. The height of each column corresponds to the average annualized cost (\$/MMBtu) of that group of measures



### **Environmental Impact of Energy** Efficiencv



Report published by McKinsey and Co. about Green House Gas Cost abatements

The Figure shows that the energy efficiency and waste heat recovery opportunities have negative abatement cost factors

# **Energy Efficiency Opportunity**

The manufacturing sector offers *significant* opportunities for *costeffective* savings through increased energy efficiency.

| Sector                                   | Primary energy<br>& cost savings<br>(in 2020) | Investment<br>Required*<br>(2009 \$) | Savings<br>Achieved<br>(2009 \$) | Scope of<br>Potential<br>Opportunity |
|------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|
| Manufacturing<br>and Other<br>Industrial | 5,030 TBtu/yr<br>\$47 billion/yr              | \$113 billion                        | \$442 billion                    | 330,000<br>establishments            |
| Commercial,<br>Private**                 | 1,840 TBtu/yr<br>\$11 billion/yr              | \$73 billion                         | \$104 billion                    | 57 billion sq ft                     |
| Commercial,<br>State & Local**           | 860 TBtu/yr<br>\$5 billion/yr                 | \$26 billion                         | \$49 billion                     | 18.2 billion sq ft                   |
| СНР                                      | 1,470 TBtu/yr<br>\$7.8 billion/yr             | \$56 billion                         | \$77 billion                     | 50 GW of additional power            |

Sources: Energy Efficiency in the U.S. Economy, McKinsey & Company, July 2009.

Notes: Savings achieved are net present value (NPV) positive for the 10-year period of 2010-2020.

\* Not incremental; does not include maintenance costs

\*\* Includes existing buildings and excludes new construction



### Energy efficiency is a powerful solution !

- □Saves energy
- Reduces peak demand
- □ Saves carbon emissions
- □Saves money
- Increases profitability
- Increases sustainability
- Can be achieved at low payback on investment in many instances



## Industrial Assessment Center





To provide energy efficiency, energy management, waste minimization, and productivity improvement services in the region and conduct research on energy efficiency measures



## Industrial Assessment Centers (IAC)





## IAC at WVU

- Averages \$ 400,000 a year in funding from DoE and WVDE and other organizations
- One of the longest standing centers at WVU beginning 24<sup>th</sup> year
- Average of 5 graduate students and 2 undergraduate students supported at any time
- Average peer reviewed research publications 2 to 3 per year
- □ Workforce development in energy efficiency
- □ Serves the State of WV and region



- Generation For an IAC assessment, plants have to qualify
- Manufacturing plants in WV do not have to meet the criteria due to funding from WVDE
- **D**E3 assessments done partnering with WV MEP
- The WVDEP grant facilitates assessments for development of sustainable communities
- Other entities doing energy assessments in the State



### IAC Energy Assessment

- TechnologyAssessment andResearch
- Delivered Results in terms of Energy
  Efficiency, Lower
  Energy Costs, Lower
  GHG Emissions



## IAC Energy Efficiency Improvement Focus Areas

- **D**Electrical Systems
- Lighting
- □ Motors (Fans, Pumps, etc.)
- Steam
- □ Process heating



## IAC Assessment Methodology



## Summary of Enhanced Energy Assessment Process

#### Pre-Assessment

- Client recruitment
- Interactive Sessions
- Utility bills analysis





## Energy Management – ISO 50001 and SEP

#### ISO 50001 - Energy Management Standard

- Establishes a framework for industrial and commercial facilities and organizations to manage energy.
- Offers companies international approach for
  - Corporate sustainability programs
  - Energy cost reduction initiatives
  - Demand created along the manufacturing supply chain



#### Status of ISO 50001

- Published on June 15, 2011
- Available for purchase from ANSI
- Developed by ISO Project Committee 242; United States and Brazil led effort with the United Kingdom and China
- 59 countries participated, 14 of which observed



## Impact of IAC – WVU

- Total energy saved: 5.4 Trillion Btu per year by 456 manufacturing facilities (implemented 2.38 TBTU/yr)
- Implemented projects worth of \$11.6 million USD to achieve savings of \$18.2 million USD
- Total CO<sub>2</sub> emissions saved: 711,410 tons per year (314,016 implemented)
- Demand savings separate
- Payback on investment: average less than 2 years

|                       | Recommended Savings |                               | Impleme                       | nted Savings |
|-----------------------|---------------------|-------------------------------|-------------------------------|--------------|
|                       | Energy (MMBTU       | /yr) Cost (\$/yr)             | Energy<br>(MMBTU/yr)          | Cost (\$/yr) |
| Demand (kW-<br>mo/yr) | 408,174             | 4,050,585                     | 200,002                       | 1,980,503    |
| Electricity           | 1,293,477           | 15,489,521                    | 608,533                       | 7,462,407    |
| Natural Gas           | 3,334,920           | 24,995,890                    | 1,149,785                     | 7,777,808    |
| Coal                  | 369,048             | 1,048,973                     | 254,787                       | 554,048      |
| Wood                  | 377,716             | 257,478                       | 147,520                       | 135,493      |
| Fuel Oil              | 106,978             | 895,474                       | 43,997                        | 417,937      |
| Subtotal              | 5,482,139           | 47,528,399                    | 2,388,276                     | 18,162,599   |
|                       | CO2 Savings         | Recommended<br>Savings (Tons) | Implemented<br>Savings (Tons) |              |
|                       | Electricity         | 414,992.69                    | 195,238.69                    |              |
|                       | Natural Gas         | 188,422.98                    | 64,962.85                     |              |
|                       | Coal                | 38,214.92                     | 26,383.19                     |              |
|                       | Wood                | 61,152.22                     | 23,883.49                     |              |
|                       | Fuel Oil            | 8,627.24                      | 3,548.14                      |              |
|                       | Total               | 711,410.05                    | 314,016.36                    |              |



## Implementation



## **Research Focus of IAC-WVU**



### Partners

- Doe, Eere, Netl
- U WVDE
- U WV MEP
- □ Industries of the Future WV (IOF-WV)
- □ International Lead Zinc Research Organization (ILZRO)
- U WVDEP
- 🖵 EPA
- USDA
- D PPG
- Bayer
- □ Lawrence Berkeley National Laboratory
- Oak Ridge National Laboratory



### **RECENT ENERGY ASSESSMENTS IN WV**

- Steel of WV, Huntington
- Rubberlite, Huntington
- Northwest Pipe, Washington
- Quad Graphics, Martinsburg
- Ply Gem, Martinsburg
- Koppers, Follansbee, Huntington
- Flying W Plastics, Glenville
- Silgan Plastics, Wheeling
- NGK Spark Plugs, Sissonville
- Klockner Pentaplast, beaver
- Eagle manufacturing, Wellsburg
- McKenzie Dow, Huntington
- Motts, Maxwelton
- New River Hardwoods, Beckley
- Homer Laughlin, Newell
- Oliverios Peppers, Clarksburg



# Energy Assessments for WV Industry - Some Results













# Steel of WV, Huntington

| AR No. | Description                                                                                                                                                          | Annual Potential<br>Conservation |           | Potential<br>Savings | Resource    | Estimated<br>Cost | Simple<br>Payback |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|----------------------|-------------|-------------------|-------------------|
|        | ·                                                                                                                                                                    | MMBtu                            | kWh       | (\$/Yr)              | Conserved   | (\$)              | (months)          |
| 1      | Develop a Demand Monitoring System to Reduce Demand Cost                                                                                                             | -                                | -         | 275,195              | kW Demand   | 8,840             | 1                 |
| 2      | Replace Existing Recuperators on Reheat Furnaces with<br>More Efficient Units                                                                                        | 50,087                           | -         | 221,385              | NG          | 700,000           | 38                |
| 3      | Implement a Motor Management System                                                                                                                                  | -                                | 2,180,892 | 74,556               | Electricity | 1,616             | 1                 |
| 4      | Insulate the Furnaces and Tundish Dryer                                                                                                                              | 11,039                           | -         | 48,792               | NG          | 2,796             | 1                 |
| 5      | Install Automatic Dampers and Occupancy Sensors to Regulate the Exhaust Flow in the Welding Booths                                                                   | -                                | 1,860,765 | 42,742               | Electricity | 2,560             | 1                 |
| 6      | Replace the High Pressure Sodium Fixtures with T5 Ganged<br>Fluorescent Lighting Fixtures, Electronic Ballasts and<br>Reflectors in Places Where Atmosphere is Clean | -                                | 1,001,428 | 33,266               | Electricity | 146,250           | 53                |
| 7      | Install Photo Sensors to Switch-off Lights in the Mill #2 area                                                                                                       | -                                | 366,689   | 18,823               | Electricity | 5,460             | 4                 |
| 8      | Reduce Compressor Pressure Set Point After Fixing the Air<br>Leaks                                                                                                   | -                                | 279,014   | 9,576                | Electricity | 736               | 1                 |
| 9      | Replace Drive Belts on Motors with Energy Efficient Cog<br>Belts                                                                                                     | -                                | 167,611   | 5,725                | Electricity | 0                 | Immediate         |
| 10     | Repair Compressed Air Leaks                                                                                                                                          | -                                | 132,309   | 4,538                | Electricity | 1,992             | 6                 |
| 11     | Use Outside Air for Air Compressor Intake                                                                                                                            | -                                | 131,534   | 4,511                | Electricity | 4,812             | 13                |
| 12     | Replace Ordinary Nozzles with Vortex Nozzles                                                                                                                         | -                                | 2,249     | \$1,275              | Electricity | 1,077             | 11                |
|        | Total                                                                                                                                                                | 61,126                           | 6,122,491 | 740,384              |             | 876,139           | 15                |



# Steel of WV, Huntington

- **1**2 recommendations
- □Natural gas savings, 61,126 MMBtu/year
- Electricity savings, 6,122,491 Kwh/year
- Cost savings, \$876,139/year
- Average payback on investment, 15 months
- Focus areas: Furnaces, compressor, motors, lighting



## Koppers, Huntington

- **1**6 recommendations
- □Natural gas savings, 1,138 MMBtu/year
- Electricity savings, 663,061 Kwh/year
- □Cost savings, \$64,997/year
- Average payback on investment, 23 months
- General Focus areas: Lighting, motors, compressors



## Koppers, Follansbee

- **1**4 recommendations
- □Natural gas savings, 41,022 MMBtu/year
- Electricity savings, 759,762 Kwh/year
- Cost savings, \$632,820/year
- Average payback on investment, 8 months
- Focus areas: Steam system, heat recovery, motors, lighting



# Quad Graphics, Martinsburg

- □11 recommendations
- □Natural gas savings, 124,266 MMBtu/year
- Electricity savings, 3,031,194 Kwh/year
- Cost savings, \$1,130,332/year
- Average payback on investment, 5 months
- Focus areas: Furnaces, compressor, motors, lighting



- **1**6 recommendations
- □Natural gas savings, 17,561 MMBtu/year
- Electricity savings, 1,127,967 Kwh/year
- □ Propane savings, 1,310 MMBtu/year
- □Cost savings, \$261,565/year
- Average payback on investment, 21 months
- General Focus areas: HVAC, lighting, boilers, motors
- Additional renewable energy assistance provided



# Plygem, Martinsburg

- **1**6 recommendations
- □Natural gas savings, 957 MMBtu/year
- Electricity savings, 1,217,655 Kwh/year
- Cost savings, \$83,079/year
- Average payback on investment, 17 months
- Generation Focus areas: Compressed air, motors, lighting



# Summary

- Implementation of energy efficiency measures over 50%
- □ Introduction to energy management for clients
- Continual energy and cost savings and emissions reduction
- □ Replications and spinoffs
- □ Productivity improvement
- □ Utility rebates and incentives help AEP, first Energy, USDA REAP



# **QUESTIONS ?**

