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It is difficult to make predictions,
especially about the future.

Niels Bohr, Yogi Berra, Sam Goldwyn, Casey Stengel, Will Rogers, Dan Quayle, Mark
Twain, Albert Einsteir, Winston Churchill, Enrico Fermi, Groucho Marx, Confucius,
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Figure 1. Simplified block-flow diagram for
FT conversion of feedstock to products.



COST FOR PLANT

Syngas Generation 65-70%
Fischer-Tropsch Syn. 24-21%

Upgrading to Fuels 19-9%



nventional GTL Plant Capital Investment
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» Conventional GTL plant is not cost competitive at
the capacity typical of biomass feedstocks
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ECONOMIES OF SCALE
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Exhibit 5-3: Capital Costs Per Daily Barrel of Fischer-Tropsch Liquids from GTL Projects and

2011 5/Daily BBL (Including NGL)
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Economic
viability of GTL

AIALYSIS
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Feedstock Pretreatment

Natural Gas: Easy since a gas

Coal: Remove ash only; heteroatom in
carbon fraction.

Biomass: Drying is energy intensive; high
oxygen content.



The Challenge of Biomass Conversion:
Oxygen Removal

1. Remove HZO

(pyrolysis, charcoal)
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Syngas Purification
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AGR Technologies Can Provide Near 100%

Sulfur Removal If Required

"Clean Syngas" (AGR = Acid Gas Removal)
CO, H,

Clean

Solvent § .
Three Main Technologies:

+ MDEA (methyldiethanolamine) — Chemical absorption,
98% to 99+% S removal, large CO, slip (unless use a
second stage for CO, recovery), moderate operating
temperature, lowest AGR capital cost

« Selexol ™™ (primarily dimethyl ethers of polyethylene
glycol, DEPE) — Physical absorption, 99+% S removal,
variable CO, slip (based on design), higher AGR cost
than MDEA but overall AGR/SRU system costs are
similar

Dirty

gotyent * Rectisol '™ (methanol) - Physical absorption, 99.5% to
99.9+% S removal, complete CO, removal possible,

"Dirty Syngas” highest AGR cost, coldest operating temperatures

CO,H,,CO,,H,S [Used by Eastman]

EASTRIAR



Figure 14: Absorption Coefficients
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Svyngas Generation
65-70% of Cost
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1950: Only proven option was Lurgi and this was used by Sasol.

Today: Many options but most produce low H:/CO ratio (1.6-
2.1).
Commercial versions of most have reached their
maximum size.

Future: Molten Iron or Molten Salt
Compact Gasifier
lonic Membrane Separation
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Figure 4. Photograph and schematic of the Catlettsburg, Kentucky bench
scale test facility.



Figure 6. Photographs of key MEFOS facilities: (A) Electric arc furnace, (B)
Universal converter
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Molten Metal/Salt Gasification (representative,
not complete list)

1971 Kellogg Process, molten sodium carbonate (Cover et al., Chem. Eng. Proc., 69, 31,
(1973).

1984 Molten Iron Pure Gasification Process, (Henrich et al., Chemie-Technik, 13, 45
(1984).

1996 Hymelt Gasification Process (D. Malone, Commercialization of the Hymelt process
for lllinois coal, Final technical report, July 1, 2002 through Sept 30, 2003.

2002 Hismelt Gasification Process (Burke and Gull, Smelting Reduction for Iron Making,

Bhubaneswar, 18-10 December, 2002.
2008 HydroMax Advanced Gasification Technology, Diversified Energy, FeSn alloy.
2012 Molten Salt Gasification, developed by US DOE Idaho National Lab., Western
Hydrogen Ltd., licensed rights.
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R Compact Gasification System

ROCKETDYNE

* Next generation Gasification System that is
environmentally friendly and lower cost than existing systems

Putearized p }
CosbEbmmiass Hoppe W

Dry Solids
Pump
{PWR)

H/ Ty

§ Slag Lockhoppis

Coarse 51
: £ . & A N e ,&fﬁ? 1 e )
Testing Initiated - Successful Testing
March 2012 ; Completed April 2011
EERC - North Dakota Reduces customer capital Gas Technology Institute - lilinois

and operating cost by 20%

Aerojet ﬁoﬁketdyne Proprietary
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Advantages of the Compact

ArrosEr Gasification System
Current Market Leaders Compact Gasification System

* 90% size reduction (gasifier)

* 50% lower cost (gasification system)
*+ 99% availability (gasification system)
* 99% carbon conversion

* 80% to 85% cold gas efficiency

* Dry feed system
* Low oxygen consumption

* Gasify all ranks of coal, petcoke,
and biomass blends

* High pressure / water spray quench

* Ideal for H, production

* Low cost CO, sequestration
Source: Shell paper (2004)  Source: DOE paper (2006)

Aerojet Rocketdyne Proprietary
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AR Rocket Engine Experience

* Rapid Mix Injector
» Cooled Nozzle Wall
* Plug Flow

Arroser i Enables Compact Gasifier
Rocket Engine Experience Gasifier Design Features

* Dry feed system enables use of
lignite, low rank feedstocks

* Rapid mix injector assures fast and
efficient combustion

* 5000°F (2,760° C) flame temperature
gasifies most feedstock within three
feet of injector

* Active cooling system keeps metal
temperatures below 1000° F (538° C)

* Plug flow provides uniform
residence time for high carbon
conversion

* Rapid spray quench reduces syngas
outlet temperature to 700° F (371° C)

Aerojet Rocketdyne Proprietary
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lllustration of AR Gasifier Process

-
AEROJET |
ROCKETDYNE

Feed Splitter

Multi-Element Burner [H___ N W) Combustion Zone (Exothermic)

Higher T maximizes reaction rate constants, k,, k;
Plug flow maximizes T, [CO,], [H,0]
r=k,[CO,] + k;[H,0]

Gasifier Chamber
> Gasification Zone (Endothermic)

C+ H,0 ~CO+H,
C+C0,— 2CO

~3,000 - 2,500°F
(~1.650-1,370°C)

4

Raw Syngas

Aerojet Rocketdyne Proprietary




A\
e

&

N
=0

ed Energy Research

|\

20 ft
(6 m)

|

¥ 1If§:{di

- |
.\..‘..-.-.'..-m..-.i.?.c.{é:-_'. ) "_ Lo

Scale-Up Approach

tis

Primary Scaling Tools

* Gasifier: CFD (Computational
Fluid Dynamics) model

* Pump: GSD (Granular Solid
Dynamics) model
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800 TPD

Plant Demo Pump (400+ TPD)
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OTM Transport Mechanism
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Natural Gas & Steam
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Air Products’ ITM ceramic membranes
have high oxygen flux and high selectivity
for oxygen, making them ideal for tonnage
oxygen and syngas production.
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ITM can offer multiple benefits:

* 25%—35% reduction in capital requirements over conventional
cryogenic oxygen plants

* 30% reduction in capital requirements for syngas plants
* 30% reduction in operation costs for oxygen

* 35%—60% reduction in power consumption (depending on product
pressure) up to 1000 psig

* Consumes no net electricity
* |Jses syngas, natural gas or other fuel

* Can be integrated with other high-temperature processes to
produce electrical power and/or steam from depleted air

* Substantial reduction in cooling water consumption

* Compact, modular design has significantly smaller footprint
than cryogenic ASU plant or the syngas plant
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Air
Non-Cryogenic Processes Cryogenic Process
: l l
Adsorption ——
Liquid Pump Low-Pressure
Plant Plant

lon Transport Membrane

Chemical Processes

Polymeric Membrane
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Separation / Liquid

FT Reactor Upgrading product

OTM Syngas
Reactor Upgrading product

=rszo e Separation / Liquid

NG/Steam

Schematic of units involved in the conventional FTS process (upper) and the one that is possible
by eliminating the air separation unit (bottom) .
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Twia 1-TPD modules installed In the flow duct for SEP. February 2000, Oooygen production results for the two modules are shown
at various prooess condtions. For these modules. the membrane active Bayer thickness was somewhat larger than typical values.
reducing flux.

Oxygen Production Rate

Conditions

Different Opzrating
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ISTU and CerFab are critical steps to
commercialize energy-scale ITM Oxygen

ITM Oxygen Timeline

Next scale

Ceramic module test facility
manufacturing facility | Future energy applications

1000's TPD O,, power

modules

Small-scale test unit ISTU- Early industrial applications
5TPD Intermediate-scale 100s TPD O,, < 100 MW
test unit 100 TPD
2006 2013 2014 2016 2018 2020

AIR 1.
t-v

22 @ Air Products and Chemicals, Inc. 2014. All Rights Reserved



Fischer-Tropsch Synthesis

e Improve Reactor

e Improve Catalyst (ca. 50% of
operating cost)

* |mprove Process
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Exhibit 5-6 Approximate Contribution to Cost of Production of Fischer-Tropsch Liquids

M Capital M Feedstock M Other Variable M Fixed M COz Trans.
Recovery (Inc.Elec. Credits) Variable & Storage

Contribution
of Costs

0% 10% 20% 30% 40% 50% 60% 70% 20% 930% 100%
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Tube-within-tube

20 em{

Fluidized bed reactor
F ~1m—

“Chemical catalysis, which underlies a significant
portion of the country’s gross national product, is an

examples of old nanotechnology.”

National Science and Technology Council, September 1999, Washington, D.C.
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Improve Catalyst

Support  Sasol, alumina
Shell, silica, titania
BP, magnesia

Active Component: Increase loading without loss of
conversion/metal

Process: Wax/slurry separation



Improve Catalyst

Increase loading of active component.
Find a cheaper metal.
Increase catalyst life.

Viable bifunctional catalyst.
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Kellogg Pilot Sasol 1Aand Sasol 1C Reaclor Sasol 1C Reactor  Sasol 1C Secunda S-CFB S-FFB
Plant 1B Reactors FTS Coolers with Test Coil Coil Reaclor Reactor
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Schematic showing sizes of Sasol fluid-bed reactors [compiled from T. Shingles
and D. H Jones, ChemSA, August 1986, 179-182 and B. Jager, M. E. Dry, T.
Shingles and A. P. Steynberg, Catal. Lett., 7, 293 (1990)].
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Possible reactors for Fischer-Tropsch synthesis. (a) slurry
Bubble column reactor, (b) multitubular trickle bed reactor,
(c) circulating- and (d) fluidized-bed reactor.
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Typical particle trajectories within three different flow
Regions around a rising bubble.



Fast bubble
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Vortical spiral
liquid flow
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Model of flow scheme in the slurry bubble column.
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Upgrading

Currently being done by Sasol and Shell.

Little in the open literature until recently.
Amoco (now BP) and UOP did detailed study.

Easier than petroleum so need different
catalyst.
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Future in the US

Biomass: Transportation of feedstock limits to small plants
Waste: Transportation of feedstock limits to small plants
Coal: Large plants possible, carbon dioxide large so

incorporating biomass needed

Natural Gas: Large plants possible



Center for Applied Energy Research

Think Big,
Build Small
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7.
8.

Invest 90 billion to build FT plants

At 6 billion per plant, have 15 50,000 bbl/day plants (cost of
$120,000 per bbl/day)

750,000 bbl/day production from the 15 plants

US consumed 19 million bbl/day (1998); imported 10 million
bbl/d.

15 FT plants produce 3.95% total consumption; 7.5% of
Imports.

Government provide capital to build 15 plants and operators
use and provide upkeep

Sasol makes money at $10-25/bbl today operating with coal
US operator should make money at $25/bbl.

L—
(CATALYSIS .



Impact on US Coal Production

Coal Production 2000 = 1.1 billion tons

At 1 ton coal = 2 bbl FT products need 375,000 ton/day = 12.5% of
current production

At 1 ton coal = 3 bbl FT products need 25,000 tons/day = 8.3% of
current production

At 1 ton coal = 2 bbl FT products must increase coal production by
12.7%

1960-2000 coal production increased by 51,000 ton/day (1.88%/yr)

L 1 ton = 2bbl need to increase coal production 8 fold for 1 year

CATALYSIS :



Gregson Vaux, The Peak in U.S. Coal Production, www.fromthewilderness.com

Figure 2: U.S. Coal Production
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Source of data: EIA, USGS
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CASH FLOW BREAKDOWN

24%
Source: Foster Wheeler Energy Ltd.
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Fig. 1
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Moles Product per Cubic Centimeter of Reactor Volume per Second

Petroleum Biochemical  Industrial
seochemistry Processes Catalysis

Figure 4. The Weisz window and other windows of activity.



Degree of Technology Requirements
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Exhibit 5-2: Breakdown of Capital Costs by Processing Section

B Syn Gas Generation, including ASU B FT Synthesis W Upgrading and Refining MW O/U/E
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Reactor Productivity Comparison

Reactor Productivity (bpd/tonne - reactor weight)
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nventional GTL Plant Capital Investment
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» Conventional GTL rlant is not cost competitive at
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Batielie Pacific Northwest National Laboratory
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Fg. 4 - Water cycle and Integrated Management (W)

ad Other uses
Water sounce -

Make- up water [ Surface / -
euse
on-site

"Surface” Fadilities Managament
Separation, treatment O

“-
@:} Well Manage ment

Irqa:c:hwtyu’pmd.mmwf
scale, emulsions, WSO

pa'ﬁnles, mm:tsim, pmdmar
| /| sand management, etc. || ;

N |

L

Heservoir Manage ment @
sweep, conformance, souning,
out-of-target, fracture propagation
and confinement, etc.

Source: [FP Enangies nouvelles
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