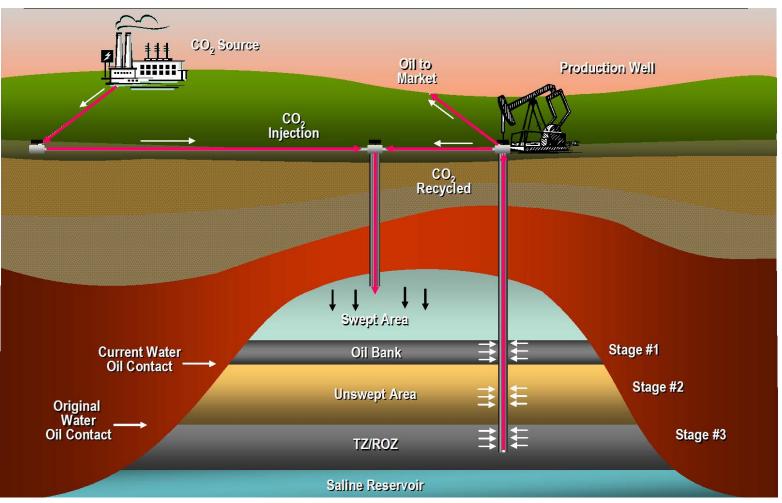
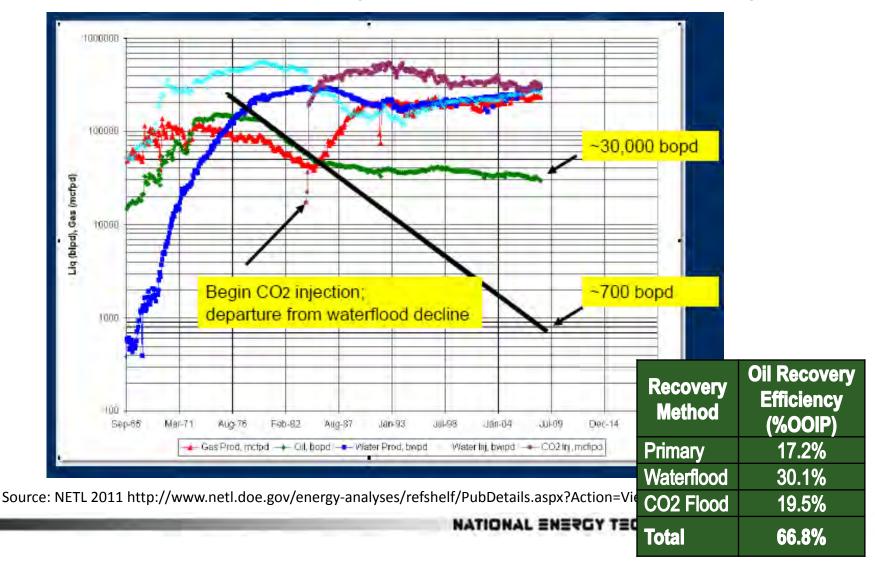

NATIONAL ENERGY TECHNOLOGY LABORATORY

Carbon Dioxide Enhanced Oil Recovery

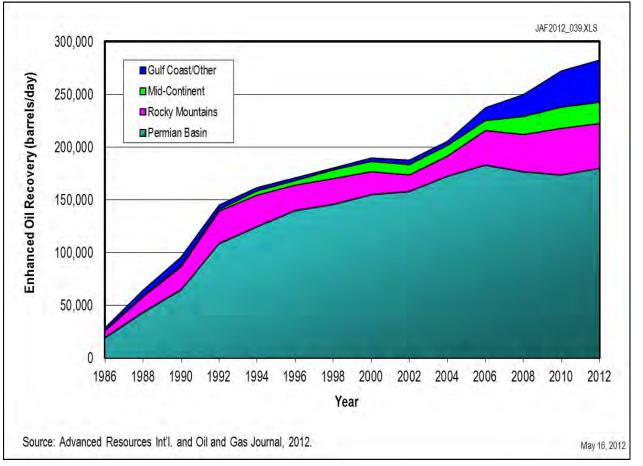

Presented at Governor Tomblin's 2012 Energy Summit West Virginia: Partnerships for Energy Development Presented by Phil DiPietro, National Energy Technology Laboratory December 10, 2012

Summary

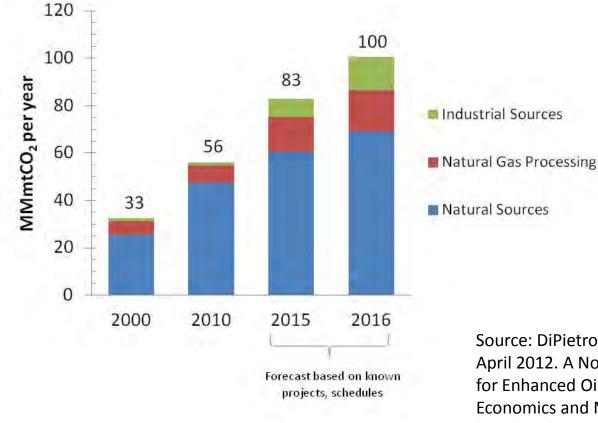

- In 2012 CO₂ EOR will provide 5% of domestic crude oil production (100 million barrels per year). It is growing, but slowly.
- The potential for CO₂ EOR to be much larger than current deployments, 24 to 137 billion barrels of resource (NETL estimate).
- The CO₂ EOR resource in West Virginia is small compared to the United States total (Original-Oil-in-Place OOIP is 0.6% of the total).
- but the technically recoverable CO₂ EOR resource in West Virginia is 183 million barrels of crude oil production, instate revenues of ~ \$16 B over 30 – 50 years (\$85/bbl * 183 MMbbls = 15.6 B\$).

Two-page primer on CO₂ EOR

Source: Advanced Resources International


CO₂-EOR results from the Denver Unit of the Wasson Oil Field (Occidental Petroleum)

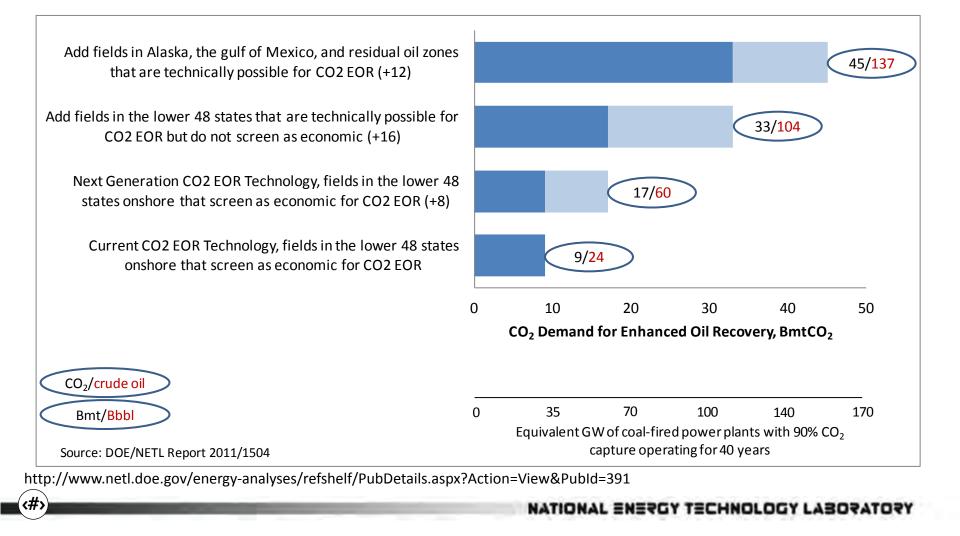
(#>


Snapshot of CO₂ EOR in the United States

Crude Oil Production from CO₂ EOR in the United States

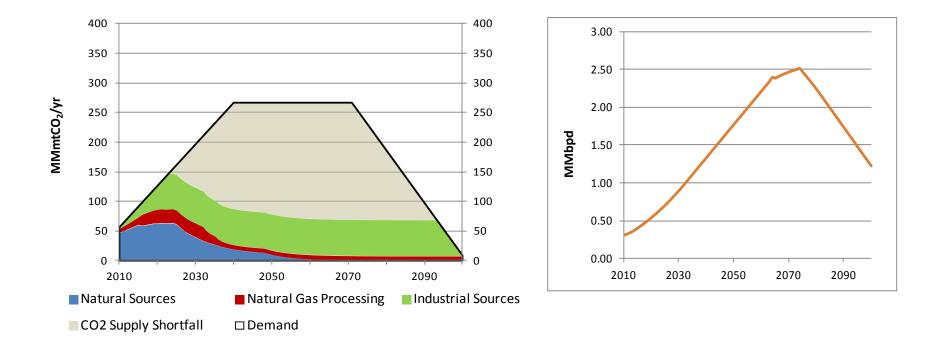
Reference point: between 2010 and 2012, total U.S. crude oil production increase by ~ 900,000 bpd

Sources of CO₂ Supply for Enhanced Oil Recovery Operations in the United States


Source: DiPietro P., Balash, P. and Wallace, M. April 2012. A Note on Sources of CO2 Supply for Enhanced Oil Recovery Operations. SPE Economics and Management (figure revised based on latest information October 2012)

NATIONAL ENERGY TECHNOLOGY LABORATORY

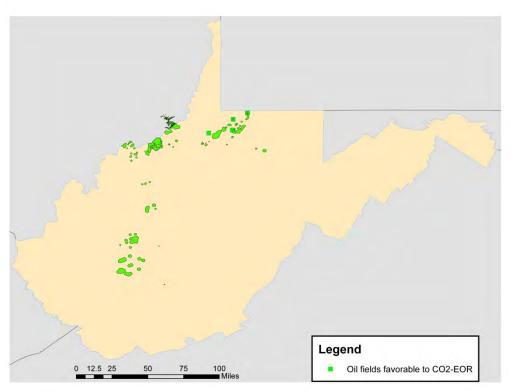
(<#)


CO₂ EOR Resource Assessment

Potential Crude Oil Supply and CO₂ Demand from CO₂ EOR in the United States

Next Generation CO₂ EOR Technology Scenario

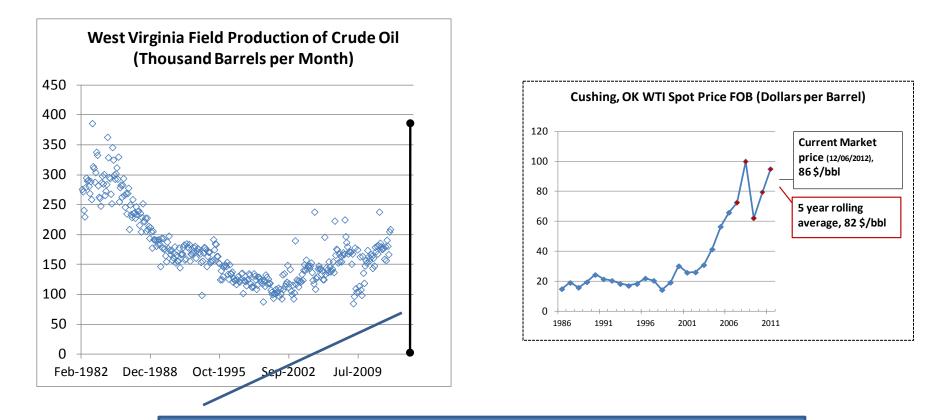
20 Billion metric tons of CO₂ demand, 60 billion barrels of crude oil production



Source: DiPietro and Nichols. 2012. "Scenarios for CO₂ EOR in the United States through 2100" draft NETL report

CO₂ EOR in West Virginia

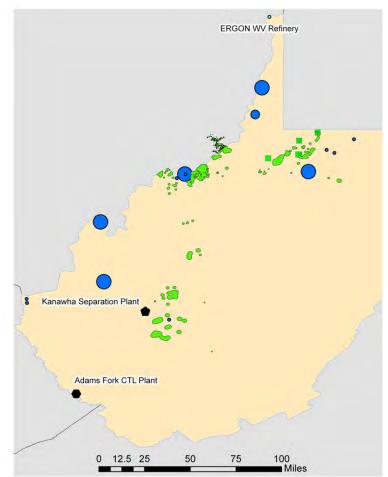
****<#>


Oil-bearing Geologic Formations in West Virginia

Primary data sources: ARI's Big Fields Database, EIA's Appalachian Basin Oilfield map, EPA's Greenhouse Gas Reporting Program and Ventyx's Energy Velocity data

- The Big Oil Fields Database contains 51 oil-bearing reservoirs in West Virginia, total OOIP 2.4 Bbbls OOIP
- The reservoirs in the database represent 74% of oil production in the state
- 32 reservoirs in the database screen as amenable to miscible CO2 EOR (OOIP 2.0 Bbbls)
- Technically recoverable resource based on current best practices CO2 EOR technology is 183 million barrels of crude oil (9% OOIP)
- More study required to estimate how much may be economic to produce

Production Potential from CO₂ EOR in West Virginia Relative to Current Production



183 MMbbls / 40 years * 12 months/yr = 380 Mbbls/month

NATIONAL ENERGY TECHNOLOGY LABORATORY

(<#)

Oil-bearing Formations and Sources of CO₂ in West Virginia

Power plant

 \bigcirc Oil fields prospective for CO₂ EOR

Source Data: Advanced Resources International Big Fields Database, EIA's Appalachian Basin Oilfield map, EPA's Greenhouse Gas Reporting Program and Ventyx's Energy Velocity data

Getting to Market with Produced Crude Oil

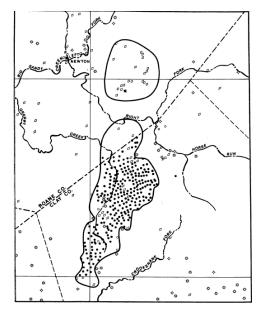
- Ergon refinery
 - Newel West Virginia
 - Capacity: 20,000 barrels per day
 - 100% Appalachian grade paraffinic crude oils
- Marathon Oil
 - Cattletsburgh, KY
 - Capacity: 233,000 barrels per day
 - Variety of crudes, topping
- Refineries responding to recent increase in regional crude oil supply
- 183 MMbbls over 40 yrs 12,000 barrels per day

Marathon Oil Company

Challenges to Overcome for Economic CO₂ EOR in West Virginia

Average Net Pay (feet)	Average Permeability (milliDarcy)
17	21
123	377
	Net Pay (feet) 17

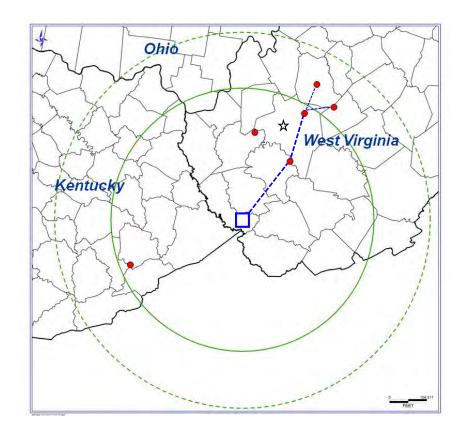
Source: Advanced Resources International, Big Oil Fields Database. Numbers are OOIP weighted average from all fields that have positive technically recoverable resource


Challenges to Overcome for Economic CO₂ EOR in West Virginia

Other challenges:

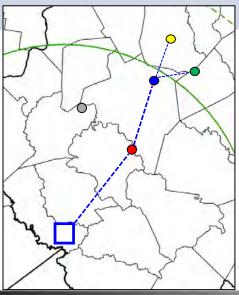
- Heterogeneous rock makes uniform sweep difficult to achieve
- Mountainous terrain increases the cost of drilling
- Existing wells likely not usable
- Scant data from P/S recovery increase uncertainty of oil response
- State unitization laws
- No big, cheap source of CO₂ (a la McElmo/Jackson Dome) to get things started

Positives:


- Heterogeneity, low perm, and undocumented P/S operations are double-edged swords: there may be a lot of un-swept oil!
- Nearby refineries represent market for produced crude oil

Well Placement Information for the Granny Creek Oilfield, from a 1979 NETL Pilot Test

Case Study: Oil Fields Prospective for CO₂ EOR in Southwest West Virginia


- Six oil fields within 100 miles of Mingo County are prospective for miscible CO₂-EOR
- Four of the oil fields fall along a straight line. In concept, they could be developed sequentially along a single CO₂ pipeline
- The key insight was that four marginal reservoirs could be combined to form one good target

Source: Kuuskraa and Petrusak. 2012. CO2 Storage and Utilization Options Near Mingo County West Virginia. Draft NETL report

Case Study: Four fields in the Mingo County CO₂ EOR Concept

		Depth (ft)	Pay (ft)	Acreage	Temp (°F)	API ^o	OOIP (Million Bbls)	CO ₂ demand (Million mtCO ₂)
\bigcirc	Walton*	2000	29	6,740	75	43	>100	14.1
	Granny Creek*	1940	40	3,840	73	45	20-100	6.5
\bigcirc	Blue Creek	1700	10-30	16,000	85	43	>100	20.6
	Cabin Creek	3000	20	4,600	84	44	10-20	5.8
Total 47							47	

{#

Source: Kuuskraa and Petrusak. 2012. CO₂ Storage and Utilization Options Near Mingo County West Virginia. Draft NETL report

Summary

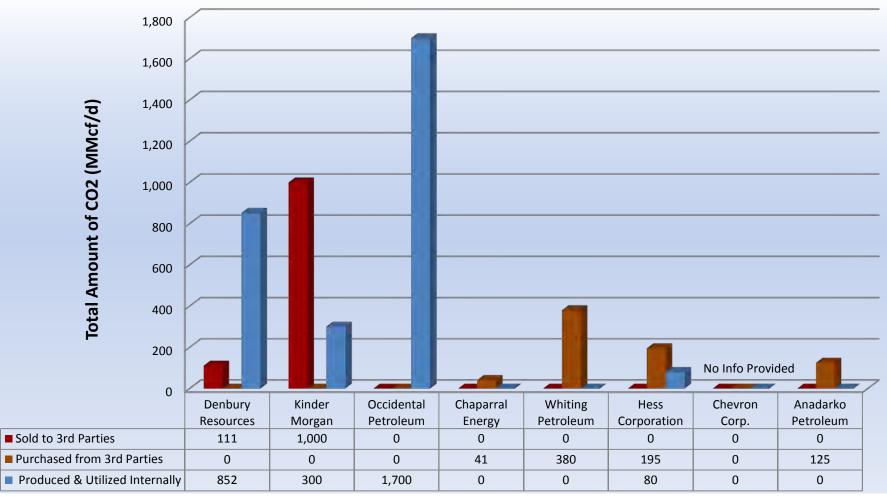
- There are challenges to developing CO₂ EOR in West Virginia, but the prize is big, ~ 16 B\$ in revenue from crude oil sales over 30-50 years
- CO₂ EOR is established and growing in other parts of the United States, needed capability exists
- Many of the technologies being developed at the National Energy Technology Laboratory can enable CO₂ EOR in more complex settings like exist in West Virginia

Thank you!

Crude Oil Production from CO₂ EOR Compared to Total U.S. Production

				Annual increase/decrease	Annual increase/decrease in	
	U.S. Crude Oil	U.S. Crude Oil	CO2 EOR as a	in total U.S. crude	U.S. crude oil	
	Production*	from CO2 EOR**	percent of total U.S.	oil production	production from CO2	
year	(Mbbls/day)	(Mbbls/day)	production	(Mbbls/day)	EOR (Mbbls/day)	
2006	5089	240	4.7%			
2007	5077	245	4.8%	-12	5	
2008	5000	250	5.0%	-77	5	
2009	5353	261	4.9%	353	11	
2010	5479	272	5.0%	126	11	
2011	5658	278	4.9%	179	6	
2012***	6365	284	4.5%	707	6	
* Energy Information Administration						
** Kuuskraa OGJ 2012						
*** Total U.S. crude oil production estimated to be 12.5% higher than 2011 based on monthly data through July						

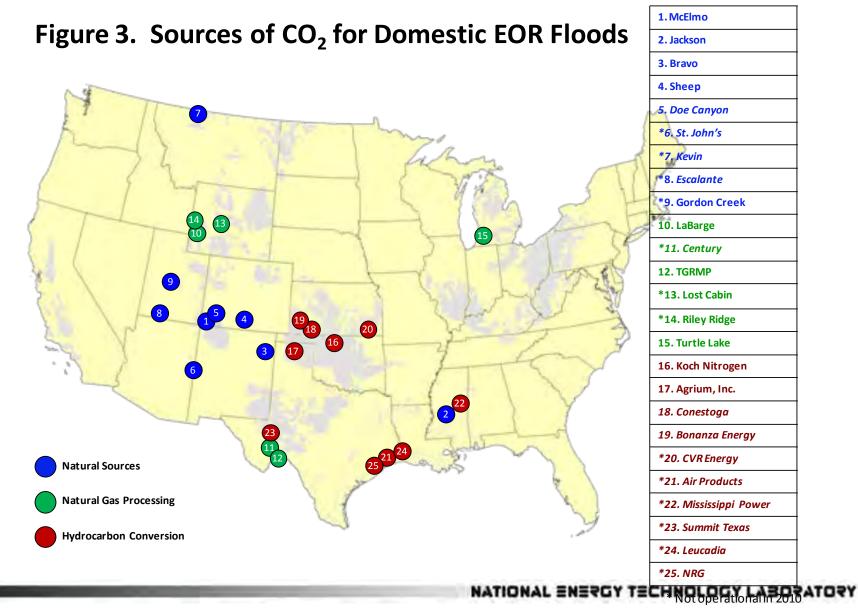
Top CO ₂ EOR Companies in the United States						
Company	2012 Crude Oil Production from CO ₂ EOR (Mbbl/d)	# of Active Projects in 2012	Cumulative percent of total production from CO ₂ EOR			
Occidental	88.0	31	31%			
Denbury Resources	39.7	22	45%			
Kinder Morgan	31.6	3	56%			
Chevron	24.2	7	65%			
Hess	20.5	4	72%			
Whiting Petroleum	20.0	4	79%			
Anadarko	13.8	7	84%			
Merit Energy	13.6	7	88%			
Other	32.8	39				
Total	284.2	124				


Other includes: ExxonMobil, ConocoPhilips, Apache, Chaparral Energy, XTO Energy, Devon, Energen Resources, Legado, Fasken, Resolute Natural Resources, Core Energy, Great Western Drilling, Orla Petco, Stanberry Oil, and George R. Brown.

(**‹#**›)

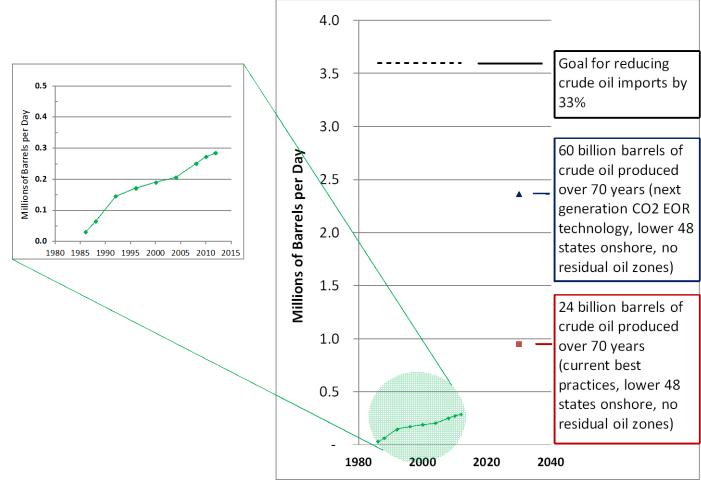
NATIONAL ENERGY TECHNOLOGY LABORATORY

Source: Kuuskraa, V.A. July 2012. QC updates carbon dioxide projects in OGJ's enhanced oil recovery survey. Oil&Gas Journal.


Different Approaches to CO₂ Supply Amount Sold, Purchased, and Produced in 2010

Information compiled from SEC filings

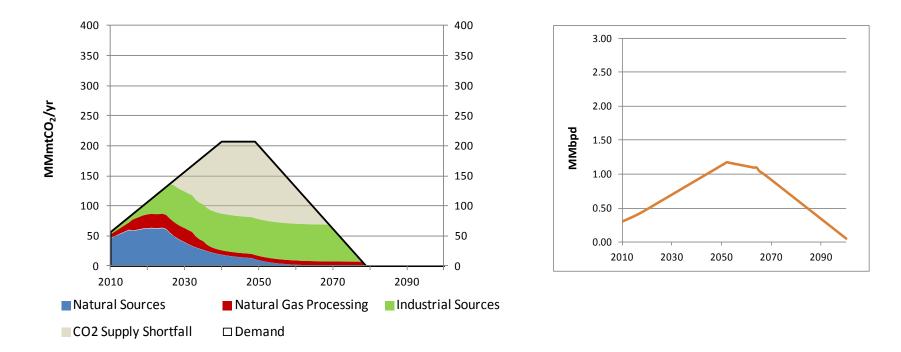
Components of Next Generation CO₂ EOR


- Improved conformance and mobility control
 - Increase viscosity of CO₂
 - Plug up high permeability channels.
- Locate and contact unswept pay
 - Better "see" CO₂ plume
 - Precisely locate CO₂ injection
- Increase CO₂ injection
 - Primarily a function of inexpensive CO₂
 - Also need ability to CO2 plume to have confidence to inject at higher rate
- Achieve near miscible behavior
 - Model and predict oil production response.

Source: DiPietro P., Balash, P. and Wallace, M. April 2012. A Note on Sources of CO2 Supply for Enhanced Oil Recovery Operations. SPE Economics and Management

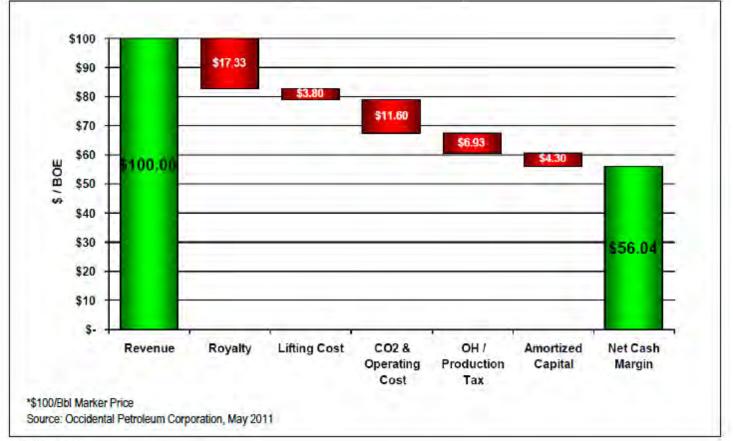
(#)

Crude Oil Production from CO₂ EOR, Potential


Information sources: Kuuskraa DOE/NETL 2011/1504; Kuuskraa OGJ 2012; Calmes and Broder NY Times March 30, 2011

NATIONAL ENERGY TECHNOLOGY LABORATORY

(<#:


Current Best Practices CO₂ EOR Technology Scenario,

9 Billion metric tons of CO2 demand, 24 billion barrels of crude oil production

Source: DiPietro and Nichols. 2012. "Scenarios for CO₂ EOR in the United States through 2100" draft NETL report

Typical Permian Basin CO₂ EOR Project Cost Structure (Occidental Petroleum)

JAF028238.PPT

Source: NETL 2011 http://www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View&PubId=391