

Global Engineering and Project Solutions

PROESA[™]

A superior technology for the production of fermentable sugars for conversion to ethanol and specialty chemicals from Cellulosic Biomass

December 2011

Chemtex Offices

Tortona, Rivalta

Shanghai, Beijing

Chemtex USA

Wilmington N.C.

Sharon Center, OH.

- Annual Turnover: USD 300 MM
- Employees: 1000

Chemtex India

Mumbai, Bangalore

Center for Renewable Resources

Fully equipped analytical and fermentation laboratories

Pilot Plant

32000 Ft² dedicated to fuel chemistry and technology from renewable resources 50 staff dedicated to R&D activities

Biorefinery Concept - Today

Catalytic conversion of sugars

Catalytic Oxidation

Lignin to aromatics

- Technology available
- Technology available
- Development phase
- Process under investigation
- Development phase
- Process under investigation

The M&G Vision

For both **Bio-Fuels** and **Bio-based Chemicals** the solution is based on the same key fundamentals:

- Competitive pricing compared to products from Black Route (at oil prices in the USD \$60-\$70/Bbl range);
- 2. Environmentally sustainable with respect to Green House Gases: overall GHG sequestration balance (including biomass feedstock farming, transportation, chemicals or biofuels production processes);

- 3. Agronomically sustainable on the long term (i.e. no competition with food)
- 4. Profitable for farmers to grow biomass feedstock

PROESA[™] - The Technology

The <u>Three Pillars</u> of PROESA[™] are:

- 1. Agronomy: Field experimentation and best energy crops identified and characterized.
- 2. Biomass Pre-Treatment and Viscosity Reduction: Continuous process developed and piloted to produce costeffective and clean fermentable sugars.
- 3. Hydrolysis and Fermentation: Unique hybrid SSCF process scheme yielding high ethanol concentrations.

Pre-Treatment

Typical process yield

Process conditions under optimization

Agronomy

<u>Our Philosophy:</u>

- ✓ Respect of the environment
- ✓ No competition between Fuel vs. Food
- Easy to insert into the traditional agronomic system and biomass market

Our Approach to Sustainability

- ✓ High yielding species
- ✓ High biomass to bioethanol conversion
- ✓ Biomass requiring low inputs (chemicals & utilities)
- ✓ Agricultural residues
- Optimization of agronomic systems (cultivation-logisticstransportation)

Agronomy and Logistics

- Availability of 150 acres for R&D related to energy crops
- R&D activities selected the best energy crops for ethanol production.

ENERGY CROPS – Herbaceous Energy Crops

The most promising herbaceous crops are Arundo donax, Miscanthus giganteus, Sorghum and Panicum virgatum. These are the species that we have studied in our experimentation.

Panicum virgatum

>10 year old Arundo donax stand at OSU 2010 yield 19.8 bdt/acre

ARUNDO DONAX – STATE OF THE ART

Since the 40s Italy has industrial experience in exploitation of Arundo donax for textile industries, (Average yield of 30 t/ha d.m. with no selection of ecotypes and using traditional non automated cultural techniques)

12000 acres during a 30 year period

Arundo Donax Characteristics

Arundo Donax - yields high dry matter with minimal fertilizer and water. Nitrogen use efficiency of sorghum, maize and Arundo

Agronomic experimentation: ecotypes selection

and plot evaluation

Agronomic experimentation: ecotypes selection

and plot evaluation

CHEMTEX

2010 Test - Evaluation of different propagation systems

methods	advantages	disadvantages
Rhizome	 safest way to propagate no need to water after planting good production the first year 	 one year of nursery for rhizome reproduction can be planted only in spring
Stem	 can be planted from autumn to spring no need of nursery easy to establish 	 lower productivity on the first year Irrigation or rain is required after planting
Micropropagation	 quick reproduction of propagules Potentially cheap easy to establish (tomato/tobacco planter) 	 lower productivity on the first year use of greenhouse for acclimatization before plasnting irrigation is required during the first year
	planter)	 irrigation is required during the first year

2009 Test - Evaluation of multiple harvest

First cutting July 20

Regrowth after one month

Thanks to *Arundo donax* adaptability it can be harvested throughout the growing season. This is very useful for the logistics of the plant.

After a 10-year cycle the rooting system can be easily removed by a chemical – mechanical combined system:

- a) Glyphosate spraying after the last cut
- b) mechanical rhizome removal with root rake or potato harvester

20 cm thickness 2011 Text of Arundo on reclaimed Surface Mine land WVU/WVEPA/WVDOE Biofuels plots at Alton West Virginia

CONTROL OF SPREADING

Every 2-3 years maintenance of the border of about 3 yards around the field is enough to avoid any uncontrolled spread.

PROESA[™] – Summary

A superior technology for the production of fermentable sugars and/or ethanol from Cellulosic Biomass

From Petrochemistry to Green Chemistry

THANK-YOU FOR YOUR ATTENTION!

