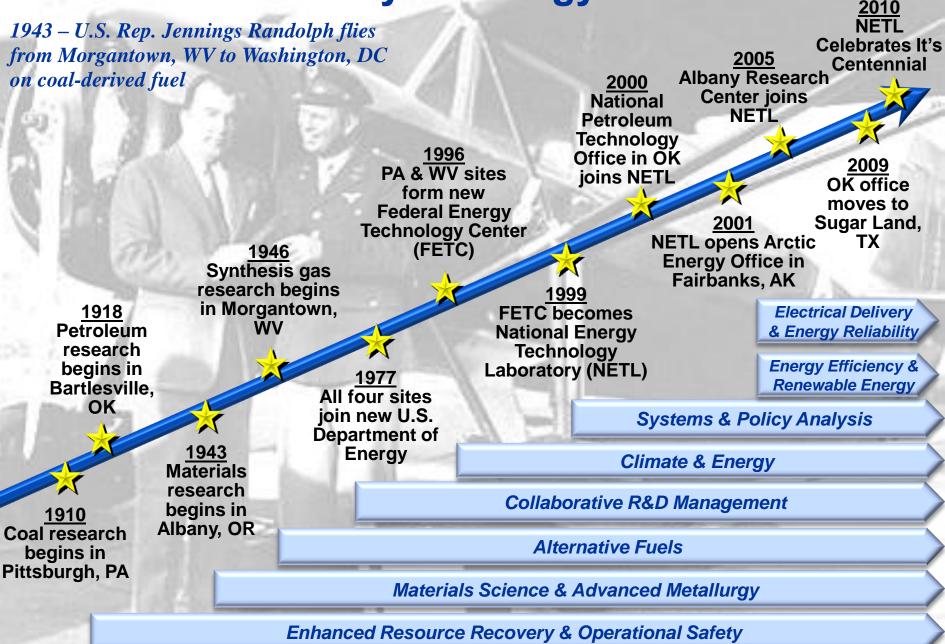
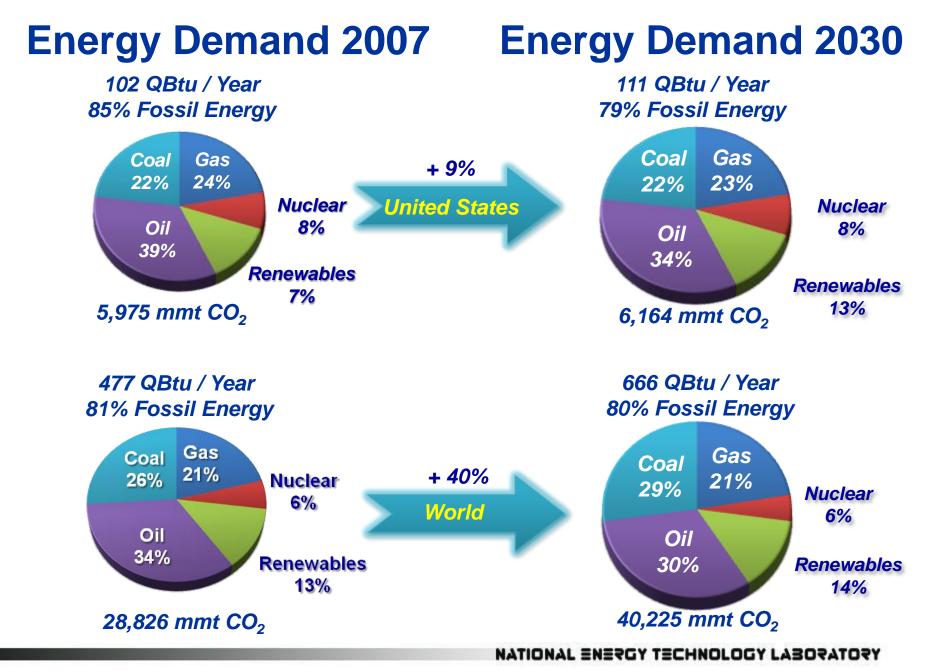


FutureGen 2.0 An Oxy-Combustion Coal-Fueled Power Plant with CO₂ Storage

Charles E. Taylor Director, Chemistry and Surface Science Division

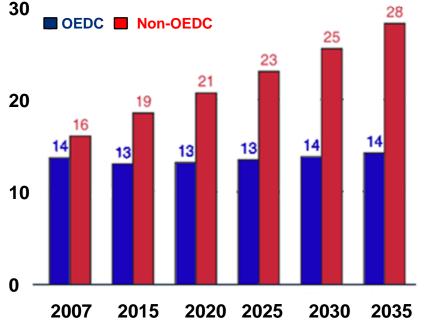
National Energy Technology Laboratory

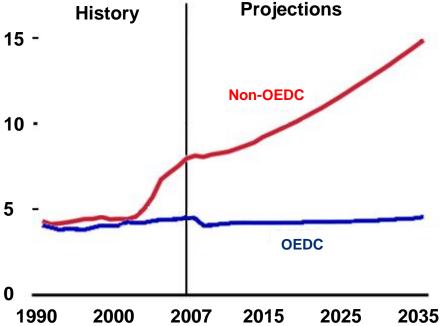

• Full-service DOE Federal laboratory


- Program Planning
- Budget Formulation and Execution
- Procurement
 - Contracting and Financial Assistance
- Project Management
 - Including NEPA Compliance
- Legal
- Financial Management and Reporting
- On-site Research
- Program Performance and Benefit Analysis
- Dedicated to energy RD&D, domestic energy resources
 - Fossil Energy
 - Support DOE's Offices of Electricity and Energy Efficiency
- Fundamental science through technology demonstration
- Unique industry–academia–government collaborations

2

NETL—A Century of Energy Innovation



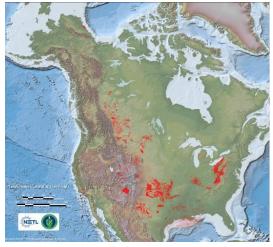

Sources: U.S. data from EIA, Annual Energy Outlook 2010; World data from IEA, World Energy Outlook 2009

Projected World Growth in CO₂ Emissions (EIA-IEO 2010 BAU Projection)

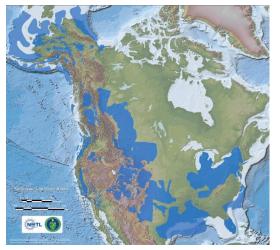
World energy-related CO₂ emissions (gigatonnes)

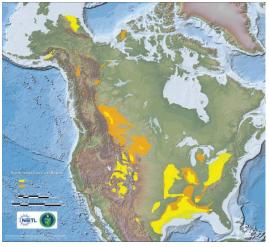
EIA's International Energy Outlook 2010 Reference case -- current laws and policies remain unchanged

NATIONAL ENERGY TECHNOLOGY LABORATORY


Report #:DOE/EIA-0484(2010), July 2010 http://www.eia.gov/oiaf/ieo/index.html

5


Adequate Geologic CO₂ Storage Projected for U.S.


National Atlas Highlights (Atlas II)

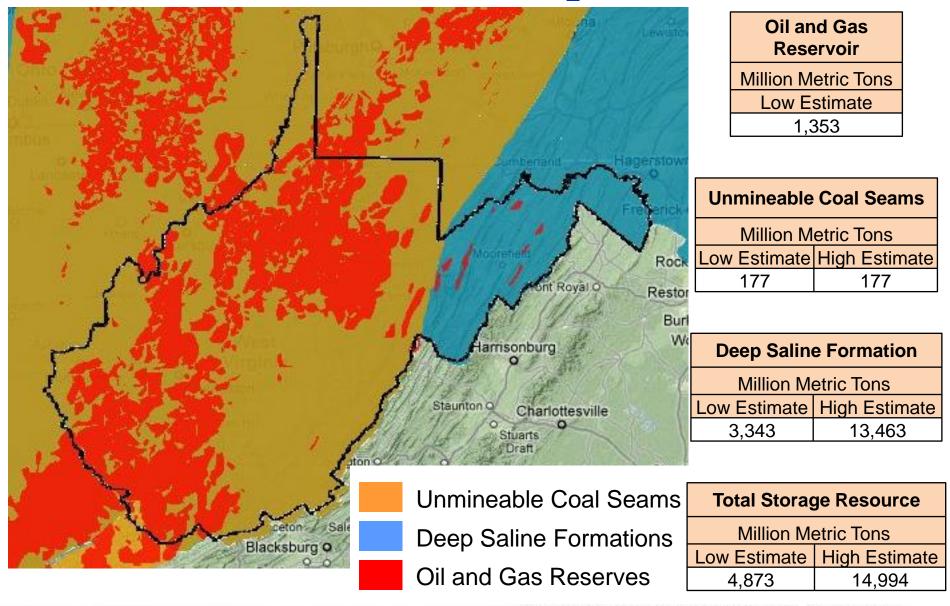
U.S. Emissions ~6 GT CO₂ per year all sources (U.S. Coal-Fueled Emissions ~2.1 GT CO₂ per year)

Oil and Gas Fields

Saline Formations North American CO₂ Storage Potential (GT)

Unmineable Coal Seams

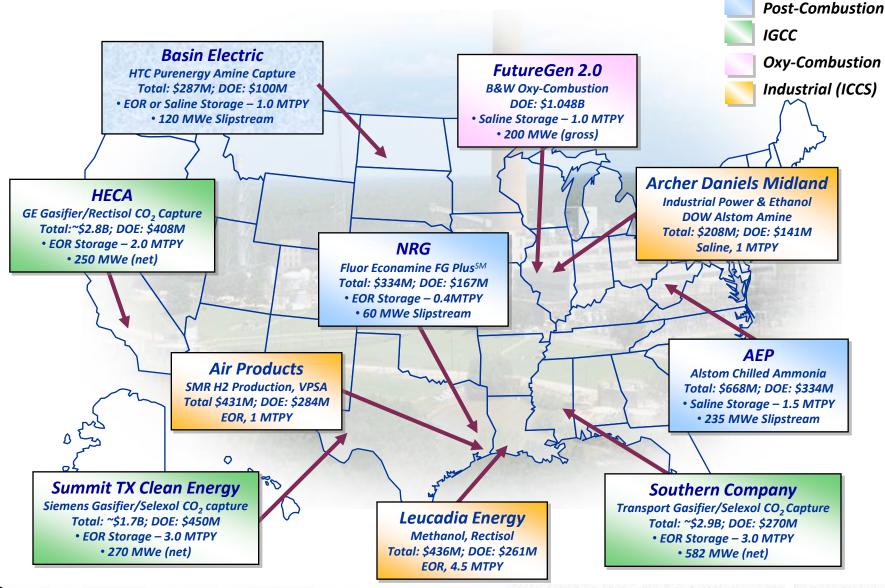
Conservative Resource Assessment


			-
Sink Type	Low	High	
Saline Formations	3300	13000	
Unmineable Coal Seams	160	180	
Oil and Gas Fields	140	140	

Hundreds of Years of Storage Potential

NATIONAL ENERGY TECHNOLOGY LABORATORY

Download at http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/atlasII.pdf

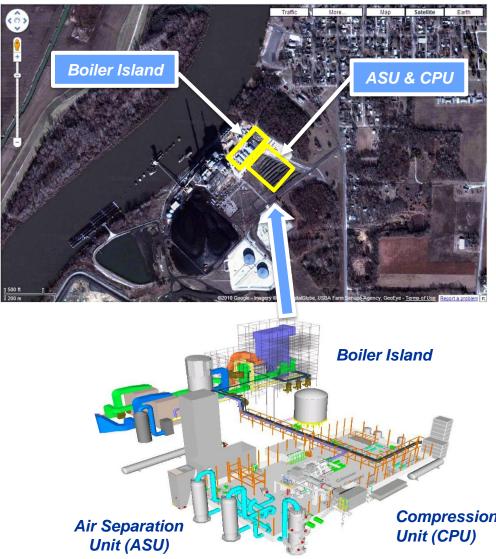

West Virginia CO₂ Sinks

NATIONAL ENERGY TECHNOLOGY LABORATORY

Sources: http://www.natcarb.org/Atlas/ims_map.html and http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/atlasII.pdf

Ten Major CCS Demonstration Projects

NATIONAL ENERGY TECHNOLOGY LABORATORY


What is FutureGen 2.0?

- U.S. Department of Energy has awarded:
 - \$590 million to Ameren, Babcock & Wilcox and American Air Liquide to demonstrate Oxy-Combustion technology at utility-scale

- \$459 million to FutureGen Alliance to transport and geologically store the CO₂
- The FutureGen 2.0 project will incorporate:
 - CO₂ Capture: Repower an existing Ameren 200 MWe power plant unit in Meredosia, Illinois with Oxy-Combustion and CO₂ compression & purification
 - Transport: Build a CO₂ pipeline to a CO₂ storage facility in Illinois (exact location TBD)
 - Storage: Develop a deep saline storage facility to sequester CO₂ from the power plant (and potentially other facilities in the region) in the Mt. Simon sandstone formation

Meredosia Power Station Site

Meredosia Plant

- Location Meredosia, IL
- Operated by Ameren Energy Resources
- 4 existing units, 3-coal fired (Units 1 & 2 mothballed), Unit 4-oil-fired
- Illinois Coal, PRB or PRB Blends
- Truck & barge unloading facilities for coal
- Repower existing steam-turbine with purpose-built Oxy-Comb PC boiler
- Existing boiler, built in 1975, to be retired
- Infrastructure exists to accommodate repowering with coal
- Unit 4 turbine & generator have low operating hours

Compression & Purification Unit (CPU)

Why FutureGen 2.0 Program?

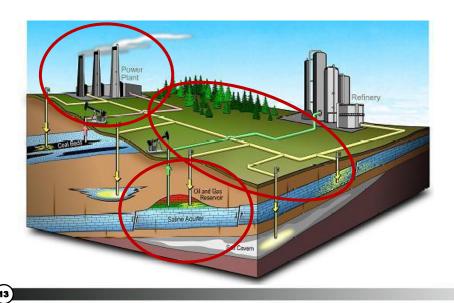
- DOE is committed to supporting diverse portfolio of commercial-scale projects; collectively intended to advance state-of-art, and ultimate commercialization of coal-based power generation in a carbon-constrained world
 - IGCC with pre-combustion capture
 - Post-combustion capture

11

- Oxy-Combustion (FutureGen 2.0)
- FutureGen 2.0 provides DOE and the US with opportunity to demonstrate a technology that could be retrofitted to existing coal-steam plants
- Pursuing these technologies, in parallel, provides DOE with the opportunity to obtain commercial-scale operating data, from major competing clean-coal technologies; yielding the results needed to help DOE evaluate its technology development portfolio, and industry to make informed investments

What is Oxy-Combustion?

Oxy-Combustion burns coal with a mixture of oxygen and CO_2 instead of air to produce a concentrated CO_2 stream for safe, permanent, storage


Oxy-Combustion has been tested at 0.5 MWe & 10 MWe. A large integrated commercial size test (150-200 MWe) will:

- Confirm cost basis for retrofitting/repowering existing coal-fired units as a pathway to lower new plant costs (e.g., 500-800 MWe scale)
- Prove operability and reliability of the integrated process Boiler Island, Air Separation Unit, Compression & Purification Unit, & CO₂ storage
- Provide performance & emissions data for future commercial guarantees
- Establish operating & maintenance experience for future commercial plants

FutureGen 2.0 Project Costs: Oxy-Combustion Repowering, CO₂ Pipeline & Storage Facility

Task	DOE	Participants
Oxy-Combustion Plant Repowering	\$ 589,744,000	\$147,436,000
<u>CO₂ Pipeline & Storage Facility</u>	\$458,604,000	\$93,931,000

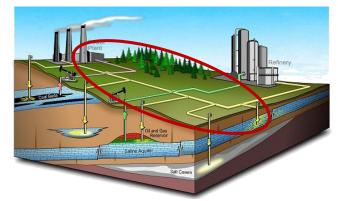
FutureGen 2.0 Total Estimated Costs \$ 1,048,348,000 + \$241,367,000

= <u>\$1,289,715,000</u>

NATIONAL ENERGY TECHNOLOGY LABORATORY

Oxy-Combustion Plant Repowering Meredosia, IL

DOE Share Participant Contribution Total Estimated Cost \$ 589,744,000 80% \$ <u>147,435,996</u> <u>20</u>% \$ 737,179,996 100%



- A large scale integrated test to repower Ameren's existing 200 MWe Meredosia Unit 4 with Oxy-Combustion & carbon capture technology
 - A purpose-built Oxy-Combustion system
 - Confirmation that Oxy-Combustion is a viable retrofit/new build technology for coal-fueled power plants
 - Basis for industry acceptance: lowers equipment, operational, reliability & financial risks for future commercial deployments to meet U.S. energy needs

CO₂ Transmission Pipeline

DOE Share \$
Participant Contribution \$
Total Estimated Cost \$

\$ 233,000,000 80% \$ <u>67,000,000</u> <u>20%</u> \$ 300,000,000 100%

- Collection & trunkline pipeline infrastructure to transport
 CO₂ from Meredosia to a deep-saline CO₂ storage site TBD
 - CO₂ pipeline to storage facility
 - DOE & FG Alliance to establish process by which competent design/construct contractor is selected

Benefits

- Construction of both collection & trunkline pipeline infrastructure may allow for future expansion to transport CO₂ from other point sources in the area
- Demonstration of the feasibility of pipeline CO₂ transport for long-term storage

Geological CO₂ Storage Repository

89%

11%

DOE Share \$235,500,000 **Participant Contribution** \$ 27,000,000¹ Total Estimated Cost 100% \$ 252,500,000

- Design, build, operate geologic storage facility capable of safely & permanently storing anthropogenic CO_2
 - Site characterization for large volumes to be stored
 - Modeling, seismic surveys, drilling of characterization wells, injection well design •
 - Visitor, education and research facilities to be co-located at the storage site

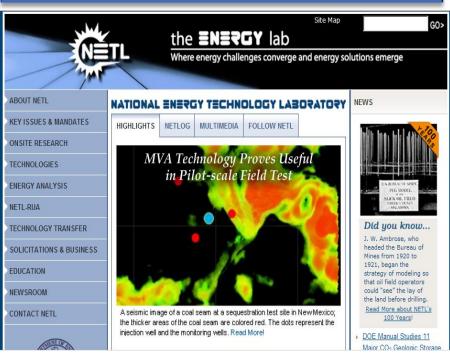
A potential CO₂ Storage Site

- The Mt. Simon formation has multiple overlying seals and large storage capacity
- Potential cost savings for future CO_2 storage needs, and potential to generate a revenue stream
- Strong community interest has been exhibited

Oxy-Combustion Summary

An advanced coal combustion technology

- Capable of retrofitting or repowering an existing plant
- As a base-load technology for new green field applications
- **Opportunity for near-zero emissions from coal**
 - Potential for nearly 100% CO₂ capture with minor economic penalty
 - Cleaner and with less CO₂ emissions than conventional NG combined-cycle
 - 40% lower water consumption than conventional amine CO₂ capture system
- Mature commercial technology cost projected to be lower than conventional post-combustion CO₂ capture
- Many Opportunities for Improvement:
 - Cryogenic ASU developments can reduce $\rm O_2$ generation power consumption by 20-35%
 - Opportunity to incorporate Ion Transport Membranes, further increasing O₂ supply efficiency
 - Smaller Oxy-Combustion specific boiler designs can increase heat transfer & reduce capital cost
 - Co-sequestration of CO₂ with NOx and SO₂ possible


For Additional Information:

www.fe.doe.gov

18

Charles Taylor 412-386-6058 – or – 304-285-0232 charles.taylor@netl.doe.gov

NETL website: www.netl.doe.gov

NATIONAL ENERGY TECHNOLOGY LABORATORY