Meeting the Carbon Challenge: AEP's Perspective

Energy Summit Advancing Domestic Resources in an Era of Carbon Challenges

Michael W. Rencheck

SVP – Chief Nuclear Officer American Electric Power

December 4, 2007

AEP Company Overview

5.1 million customers in 11 states Industry-leading size and scale of assets:

Inductry

2

AEP AEP is Strongly Committed to Addressing GHG and Environmental Sustainability

"With Congress expected to take action on greenhouse gas issues in climate legislation, it's time to advance this technology (CO₂ Capture) for commercial use"

Mike Morris

AEP President, Chairman and CEO

EPRI CO₂ Reduction "Prism"

2030 CO₂ below 1990 level

4

AEP is Pursuing a Portfolio of Options to Address Sustainability

Technology	EIA 2007 Reference Target		AEP Plan
Efficiency	Load Growth ~ +1.5%/yr	Load Growth ~ +1.1%/yr	DSM: 1000MW reduction in demand by 2012
Renewables	30 GWe by 2030	70 GWe by 2030	Wind PPAs through 2015; 1610MW nameplate or 232MW capacity for planning purposes. Also, voluntary green energy tariffs (Ohio program started 2007)
Nuclear Generation	12.5 GWe by 2030	64 GWe by 2030	Evaluation of COL
Advanced Coal Generation	No Existing Plant Upgrades 40% New Plant Efficiency by 2020–2030	150 GWe Plant Upgrades 46% New Plant Efficiency by 2020; 49% in 2030	1246MW IGCC (WV and OH) by 2017 600MW (447MW AEP) USC Turk plant (AK) by 2011
ccs	None	Widely Deployed After 2020	Chilled Ammonia: Mountaineer (WV) 2009 & Northeastern (OK) 2012 FutureGen : DOE along with AEP and Alliance members 2012 Oxy-coal 2015 (Sub-critical PC unit retrofit)
PHEV	None	10% of New Vehicle Sales by 2017; +2%/yr Thereafter	Joined Electric Drive Transportation Association (EDTA) in May 2007
DER	< 0.1% of Base Load in 2030	5% of Base Load in 2030	Pursuit of NaS Energy Storage - 25MW of storage by 2010 and 1000MW of other storage/fuel cells by 2020

AEP Leadership in Technology: IGCC/USC and Future Gen

NEW ADVANCED GENERATION

•IGCC---AEP was the first to announce plans to build two 600+ MW IGCC commercial scale facilities in Ohio and West Virginia by the middle of next decade

•USC--AEP will be the first to employ the new generation ultra-supercritical (steam temperatures greater than 1100°F) coal plant in Arkansas

•FutureGen - First Near Zero Emissions Hydrogen/ Electric (coal-fueled IGCC with CCS)-DOE along with AEP and Alliance members. COD 4Q 2012; then 3 yrs (2013-2015) CO₂ storage; and another 2 yrs (2016-2017) for long term storage validation

Efficiency and CO₂ Emission Rates

AEP

Carbon Intensity for Different Systems

CO₂ Reduction Necessary to Achieve NGCC Emission Levels

typical heat rates, used here for illustrative purposes only.

CO₂ Capture Techniques

Post-Combustion Capture

- Evaluated available CO2 capture options, considering both commercial and emerging technologies
 - Commercially available Amine based technologies
 - Currently installed on much smaller scale than PC plant and other industrial applications
 - High parasitic demand reduced unit output
 - Conventional Amine ~25-30%
 - High steam consumption for regenerating solvent (60% of parasitic load)
 - Requires very clean flue gas
 - Chilled Ammonia Process (CAP)
 - Demonstration scale under construction at WE Energies Pleasant Prairie Plant (complete end of 2007)
 - Aspirational Goal Lower Parasitic Demand
 - Power and steam parasitic load ~ 10-15%
 - Lower steam consumption (35% of parasitic load)
 - Requires clean flue gas but less sensitive to contaminants
 - Flue gas cooled to 40 to 60 °F

AEP Chilled Ammonia Technology Program

Project Validation

- 20 MW_e (megawatts electric) scale (a scale up of Alstom/EPRI 5 MW_t (megawatts thermal) field pilot, under construction at WE Energies)
- ~100,000 tonnes CO₂ per year
- In operation 2Q 2009
- Approximate cost \$80 \$100M
- CO₂ for geologic storage

Phase 1 will capture and sequester 100,000 metric tons of CO₂/year

CO₂ Capture Techniques

Oxy Coal Firing

- Modified-Combustion Capture Oxy Coal Firing
 - Key Points
 - Technology not yet proven at commercial scale
 - Creates stream of high CO₂ concentration
 - High parasitic demand, >25%
 - Demonstration Scale
 - 10 MWe scale
 - Teamed with B&W at its Alliance Research Center and several other utilities
 - Demo completion 4Q 2007
 - Commercial Scale
 - Feasibility study in progress
 - Retrofit on existing AEP sub-critical unit (several available)
 - 150 230 MWe scale retrofit
 - 4,000 5,000 tons CO₂ per day
 - Retrofit targeted between 2013 and 2015

CO₂ Capture Techniques

Pre-Combustion Capture

- Pre-Combustion Capture
 - IGCC with Water-Gas Shift FutureGen Design
 - Key Points
 - Most of the processes commercially available in other industrial applications
 - Have never been integrated
 - Turbine modified for H₂-based fuel, which has not yet been proven at commercial scale
 - Creates stream of very high CO₂ concentration
 - Parasitic demand (~15%) for CO₂ capture lower than amine or oxy-coal options

CO₂ Storage Key Points

- Challenges with storage
 - Geology Dependency
 - A 500 MW power plant could require a many wells at a spacing of several thousand feet or more
 - Not yet proven in large scale or in long-term
 - Uncertainty on environmental fate and long term interaction of contaminants in product CO₂ with saline (ammonia, water, SO_x)
 - Capacity and injection rates very site-specific
 - Long-term liability and legal ownership are points not yet resolved on federal or state level
 - Competition with natural low cost sources of CO₂ for EOR opportunities

Enhanced Oil Recover (EOR)

Graphic courtesy of USDOE National Energy Technology Laboratory

	amp	es of Relative GHG Mitigation Costs for Power Sector
\$40+		 Carbon Capture w/ Geologic Sequestration
		 Other renewable, advanced geothermal and/or solar
		 Carbon Capture for Enhanced Oil Recovery
26		 New Biomass Generation
		 Dispatch of additional gas vs. inefficient coal
2		 Biomass Co-firing
À		 Biological Sequestration (e.g. Forestry)
		New Wind
		• Nuclear
		Energy Efficiency
¢ ∩		 Methane Offsets

Questions ?

Serious issues require realistic discussion to provide commercial solutions.