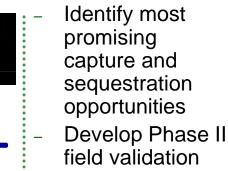
Southeast Regional Carbon Sequestration Partnership (SECARB)

Governor's Energy Summit


Roanoke, West Virginia December 4, 2007

Presented by: Gerald R. Hill, Ph.D. SECARB Technical Coordinator

SECARB Partnership Objectives

• Phase I: Characterization

- Describe CO₂ sources, sinks and transport requirements
- Develop outreach plan
- Conduct risk and environmental assessments
- Review permitting and regulatory requirements
- Establish measurement, monitoring and verification protocols
- Establish accounting frameworks (including Section 1605(b) of EPAct)

test plans

G _{2-A} and G _{2-B}	Coal Seam Sequestration Project Saline Reservoir Test Center Sequestration Project					
G ₁ Gulf Coast Stacked Storage Sequestration Proj						
	G ₃ G ₁ G ₁					
ent, monitori	ng and					

SECARB

SECARB Regional and National Involvement

Regional Involvement: 100+ Participants

- Member States (Executive, Legislative and Regulatory)
- Industry and Electric Utilities
- Universities and National Laboratories
- NGOs and Trade Associations

National Involvement in RCSP Working Groups

- Storage
- MMV
- Outreach and Education
- Regulatory
- Modeling

SECARB Partnership Objectives

• Phase II: Implementation

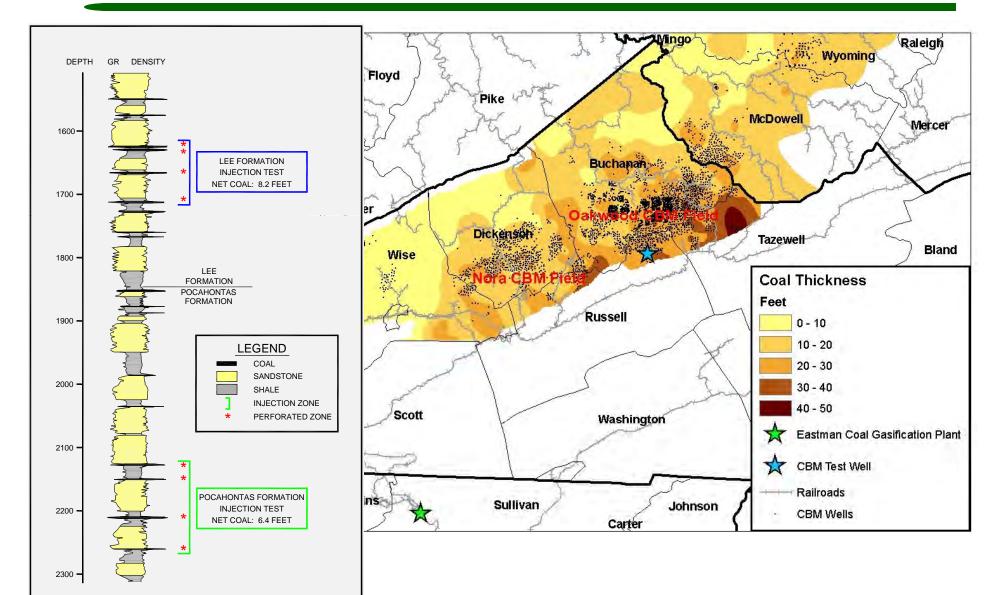
- Further characterize the potential carbon sequestration sinks in the Southeast;
- Conduct three field verification studies in some of the most promising geologic formations in the region;
- Advance the state of the art in monitoring, measurement and verification techniques and instrumentation; and
- Develop sequestration technologies and characterize geologic sinks characterized for future readiness.

SECARB Involvement – Coal Seam Projects

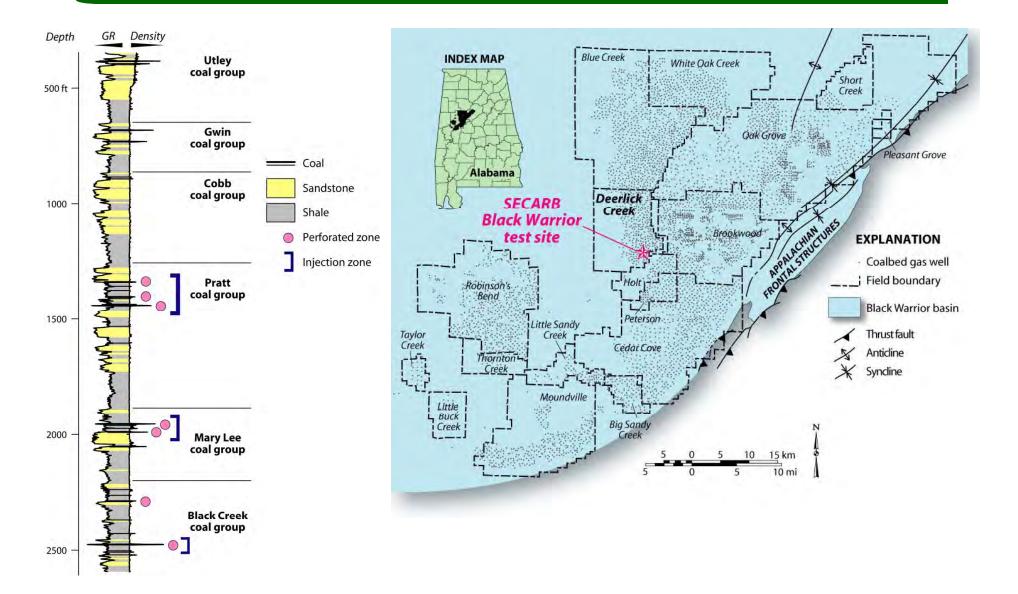
Local Involvement:

Ala	west					
Alpha Natural Resources						
AMVEST						
Buckhe	om Coal					
CCP2	Project					
CD	K Gas					
CN	K Gas					
CONSC	LEnergy					
Cumberland R	lesources Corp.					
Dart Oil & Gas						
Denbury	Resources					
Domin	ion E&P					
Dominion	Resources					
Eastman Gasit	fication Services					

	EPRI				
	Equitable Production				
MSU Inst. Clean Energy Tech.					
GeoMet					
McJunkin Appalachian					
Norfolk Southern					
Natural Resource Partners					
Oak Ridge National Laboratory					
Penn Virginia					
	Pine Mountain Oil & Gas				
	Piney Land				
Pocahontas Land					
	RMB Earth Science Consul.				
	Univ. British Columbia				


Phase II Carbon Sequestration in Coal Seams

Phase II Coal Seam Activities


- Central Appalachian Basin Test Planned for Russell County, Virginia
- Evaluate Carbon Sequestration Potential in Coal Seams
- Evaluate Enhanced Coal Bed Methane Recovery with CO₂ Injection
- Develop Plan for Large Scale Injection

Central Appalachian Coal Seam Project Location CNX Gas CBM Well in Russell County, Virginia

Black Warrior Basin Coal Seam Project Location Near Tuscaloosa, Alabama

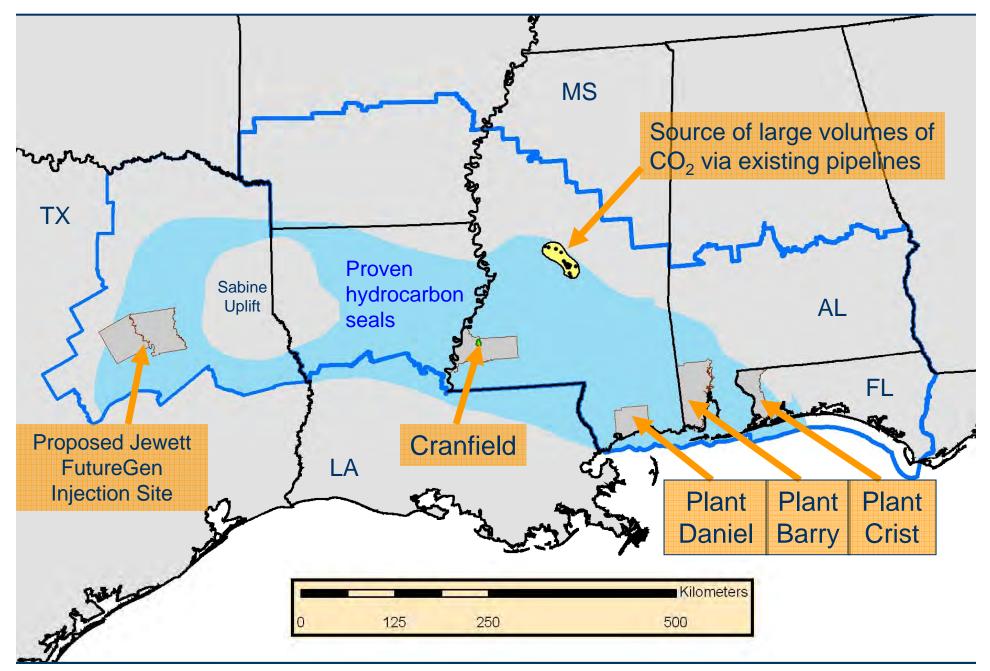
SECARB Phase III Objectives

• Phase III Demonstration

- Characterize the potential carbon sequestration sinks in the Southeast;
- Conduct field verification studies in the most promising geologic formations in the region;
- Advance the state of the art in monitoring, measurement and verification techniques and instrumentation; and
- Develop sequestration technologies and characterize geologic sinks for future readiness.

Net Electricity Generation Capacity & CO₂ Emissions by State

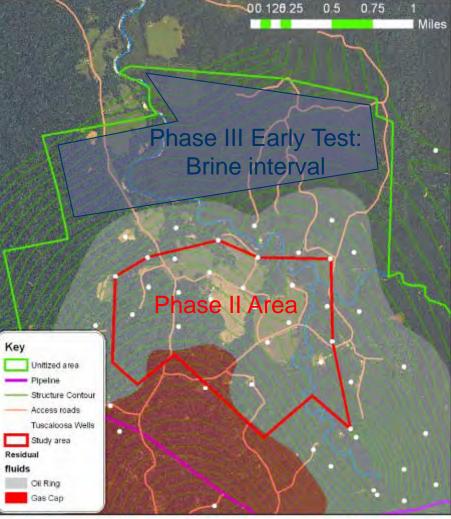
State	Natural Gas	Petroleum	Nuclear	Coal	Other*	Electric Power Industry Emissions
	(thousand MWh)	CO 2 (metric tons)				
AL	4,148	12	3,255	7,160	729	85,116,254
AR	1,800	19	1,363	2,646	465	28,494,445
FL	11,259	2,558	2,608	6,504	396	126,528,977
GA	3,821	30	2,905	8,489	539	89,897,927
КҮ	577	7	0	8,907	148	93,160,139
LA	5,342	79	1,582	2,307	302	54,098,016
MS	3,644	3	770	1,588	132	25,802,259
NC	1,341	54	3,709	7,814	443	73,138,096
SC	1,603	53	4,856	4,013	301	40,847,197
TN	342	11	2,499	5,484	675	61,379,959
ТΧ	23,739	5	3,664	13,573	1002	257,552,164
VA	2,130	321	2,550	3,464	356	42,067,787
WV	82	17	0	8,592	63	85,075,495
Total	59,828	3,169	29,761	80,541	5,551	1,063,158,715



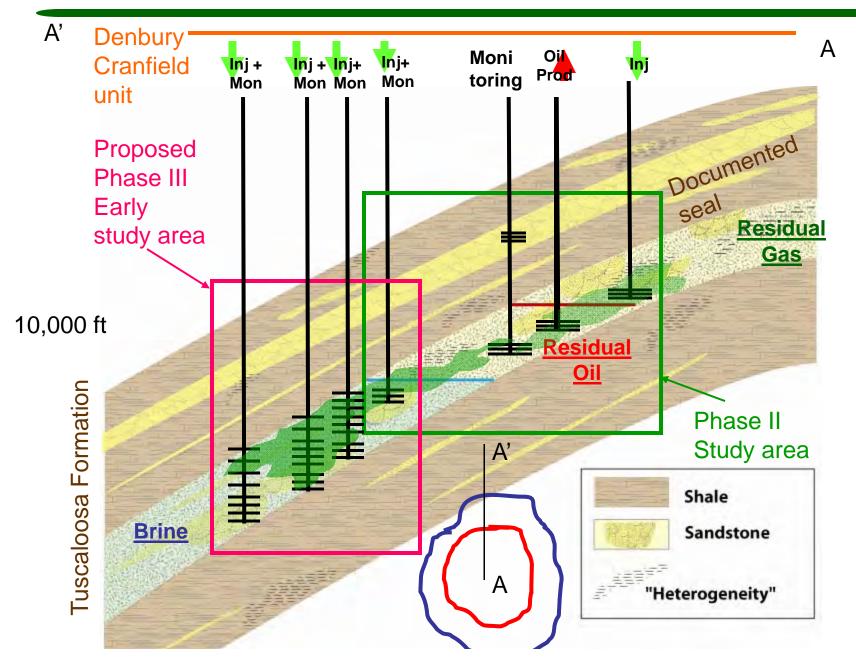
*Other: Hydroelectric and Other Renewables

Source: Energy Information Administration Website, State Energy Profiles, http://tonto.eia.doe.gov/state/ Last Update: November 22, 2007 (EIA)

Geographic Focus of SECARB Phase III Program


Site Selection for SECARB Phase III Early Test

- Large volumes of low-cost CO₂ available 2008
 - Denbury Sonat pipeline
- Well-known geologic environment in saline aquifer
 - injectivity and seal are demonstrated
 - 3-D seismic available
- Mineral and surface rights available in short time
 - Minerals rights owned by Denbury
 - Surface ownership well known and owners likely to welcome monitoring for standard use fee
- Permitting streamlined
 - EQ similar to Phase II EQ


SECARB

The area selected for the Phase III Early Test is immediately north of the SECARB Phase II "Stacked Storage" study underway, within unitized field.

Cranfield Program Overview

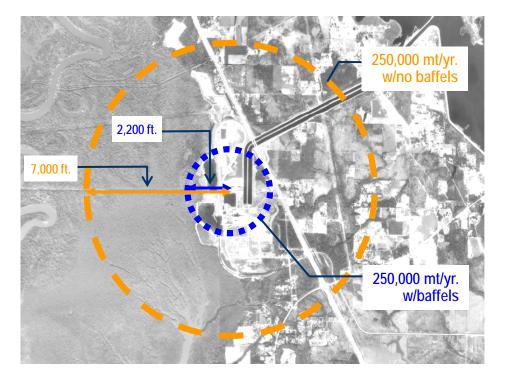
SECARB Phase III Anthropogenic Test

- Unique opportunity to demonstrate storage and MMV at a coal coal-fired power plant
 - Seek to transfer lessons learned from Cranfield test and apply lessons learned at a power plant site
 - Will help determine appropriate MMV techniques and protocols as they apply to a power plant site (what works/what doesn't)
 - Defines business and legal issues that make a power plant site unique, i.e., demonstration in light of electrical reliability and cost of commercialization
- Appropriately planned and implemented MMV is the pathway to public acceptance. This is a high priority for SECARB at a coal-fired power plant as it will:
 - Assure operator & public safety (often the same)
 - Support regulatory and institutional framework and public outreach
 - Support long-term management, liability, and compliance considerations
 - Help address siting criteria for future CCS coal-fired power plants
 - Support utility owner's engineer understanding

SECARB

Optimizing and Concentrating CO₂ Storage

Extent of the CO₂ Plume


CO₂ injection @ 100,000 mt/yr; 10 years of time)

nt/yr. tets 1,400 ft 4,300 ft 4,300 ft 5 1 Miles

e use of reservoir architecture s CO₂ storage by nearly 10 fold.

Extent of the CO₂ Plume

(4 years of CO₂ injection @ 250,000 mt/yr; 10 years of time)

Extensive use of reservoir architecture reduces the areal extent of the CO_2 plume by 90%.

SECARB Phase III MMV Goals

ian Strazisar - NETL (Isotopes)

- Demonstrate that geologic storage of CO₂ is environmentally safe with public acceptance of sciencebased monitoring protocols
- Demonstrate protocols capable of surveying large areas and identifying seepage over project life cycle
- Understand the relationship between site characterization, storage mechanisms, and leakage
- Validate and calibrate model predictions and monitoring tools for fate and transport
- Transfer knowledge and technologies:
 - lessons learned from Phase II to Phase III
 - unique opportunity to deploy MMV at a coal-fired power plant

