Carbon Management and Critical Minerals: West Virginia's Role in Energy Transitions

West Virginia Geological and Economic Survey

- State Agency since 1897
- Housed in the WV Department of Commerce
- Non-Regulatory, ~35 FTE; Coal/Oil and Gas/General Geosciences
- Applied geoscience research and "boots on the ground" mapping
- Maintains the State's geological sample collection
- Free Mini Museum on Cheat Lake in Morgantown

Discussion Topics

1. Carbon Management and Critical Minerals: Why are they important?

- 2. The West Virginia Advantage
- 3. Geology Matters : Assessing the Framework Through (Deep) Time

Refineries, etc Hafaium Nuclear control such, allow Industrial NET IMPORT EFLIANCE Uses and Fuel -> 11% Allowing agent in annapage, defense industries Food Power lines, construction, electronics Products High-temperature ceramics production Caroon Ma To M Minerals: Why are they important?

Cement/Steel

Coal, Natural Cas,

and Biomass

The 50 Minerals Critical to U.S. Security

- EXAMPLE USES

vananskip fanita

Critical Minerals 3

This list of minerals deemed essential to the economic

in military fighter jets, put

hered are save whether other to speed and maneuverability

and national security was released Feb 22, 2022.

Cumulative energy and industrial CO₂ emissions (domestic consumption)

Cumulative emissions in the REF scenario were 143 Gt from 2020-2050 and 78 Gt in each of the decarbonization scenarios.

Oil products are responsible for most of the cumulative emissions, followed by natural gas, then coal. By 2050 11 Gt CO2 is sequestered in durable products that were produced using non-biogenic carbon [1]. Geologic sequestration is used to offset 10 Gt in the E+ scenario and 20 Gt in the E+ RE- scenario.

[1] Sequestration from lumber and wood products is not included in these estimates.

Princeton Net-Zero America: <u>The Report | Net-</u> <u>Zero America Project</u> (princeton.edu)

page 35

ENERGY

Other Colours of Hydrogen

Bituminous coal is used to make black hydrogen^[6]

Brown coal (lignite) is used to make brown hydrogen.^[7]

Solar power or a mix of energy sources from the electrical grid are used to make yellow hydrogen.^[10]

Methane pyrolysis is used to make turquoise hydrogen.^[11]

Naturally occurring geological hydrogen is called white hydrogen.^[12]

KEY MINERALS IN ELECTRIC & HYBRID CARS

Information from USGS Professional Paper 1802

Association of American State Geologists

Information from USGS Professional Paper 1802

Figure I. Rare Earth Elements in Guidance and Control Systems

Figure 2. Rare Earth Elements in Defense Electronic Warfare

% Global Production (2017)

Select countri	es																				ø		tan				
	United States	Canada	Mexico	Argentin	Brazil	Chile	Poland	Spain	Algeria	DRC	Gabon	Guinea	Nigeria	Rwanda	S. Africa	Iran	Qatar	Burma	China	India	Indonesi	Japan	Kazakhst	Russia	S. Korea	Australia	Other
Aluminum (Bau	x.)	1	1	13	12.5	1	1	Ť	1	1	1		1	Ť.	Ť.	1	Ť.	1	22.6		1	1	1	1		28.5	214
Antimony																			72							T	28
Arsenic																			69								31
Barite																			37	(8							45
Beryllium	71																		Τ								29
Bismuth																			73								27
Cesium	NA																		Τ								
Chromium															46.2								129				40.9
Cobalt										61					Т												39
Fluorspar			18							T									61								23
Gallium																			94								6
Germanium																			57								43
Graphite (Nat.)					10														75								15
Hafnium	NA																		T								
Helium	57								87								28										63
Indium																	T		40						-		27.5
Lithium			1	83		21																			T	58	219
Magnesium Me	tal																		89							T	0
Manganese											127				31											16	30.5
Niobium				1	88										T												12
PGMs					Τ										72)											12
Potash		29													Т									128	5		40.4
Rare Earth Elem	nents	T																	80							-	6
Rhenium	17						19												55								
Rubidium	NA																		T								
Scandium	NA																										
Strontium			28					35.	3							157			19.6								0
Tantalum										42			85	24													25.5
Tellurium										T									68			0					92
Tin																		6	80		163						28.8
Titanium Conc.		6	h												18				6							8	38
Tungsten																			82								18
Uranium		22.5																	T				39			0	28.5
Vanadium															112				56					25	1		7.8
Zirconium															24.3	1										32.5	34.2

Based on USGS data. NA = not available. Where there is no value, value may be 0 or be included in "Other".

CBSN

2. The West Virginia Advantage

Resource and Policy Developments

U.S. dry natural gas production by state in 2021

billion cubic feet

Monthly dry shale gas production

billion cubic feet per day

Note: Improvements to play identification methods have altered production volumes of various plays.

= 0

West Virginia Natural Gas Gross Withdrawals from Shale Gas

L DOWNLOAD

HB 4491: CO2 Sequestration Pilot Program

- Passed WV Legislature 3/1/22 with wide bipartisan support (90-9-1 vote in House; unanimous vote in the Senate (33-0-0)); effective 5/30/22
- Pore space ownership vested with surface owner and cannot be severed
- Before a permit may be approved, must determine if proposed storage facility contains "commercially valuable minerals". Must demonstrate that interests of mineral estate will not be adversely affected or have been addressed in written agreement. Mineral owners may drill through storage.
- Unitization: Owners of 75% of pore space acreage in the storage reservoir must consent

HB 4491: CO2 Sequestration Pilot Program

- Access can be granted by the State for seismic surveys if operator is unable to reasonably negotiate with surface owners
- Can enter into cooperative agreements with other governments/gov't entities if project extends beyond state regulatory authority
- Certificate of Completion may be issued 10 years after cessation of injection
- Ownership of stored CO2 transfers to surface owner once Certificate of Completion issued; State assumes responsibility and liability
- Carbon Dioxide Storage Facility Administrative Fund (Permit Fees)
- Carbon Dioxide Storage Facility Trust Fund (Injection Volume Fees)

WV Class 6 Primacy Rule

- 47CSR13: Represents a total revision of UIC regulations, including new section on Class 6. Last major update was in 1980s. Drafted with assistance from EPA
- June 23, 2021: Draft rule filed; 30-day public comment period begins
- July 23, 2021: Public Hearing (virtual meeting)
- July 30, 2021: Agency-approved rule filed; public comments addressed
- Spring 2022: Rules packaged approved by WV Legislature; primacy application submitted to EPA
- Still waiting on EPA determination

https://apps.sos.wv.gov/adlaw/csr/ruleview.aspx?document=17482&KeyWord

Tech scientists see rare opportunity in Appalachia Appalachian Coal Ash Richest in Rare Earth Elements

U.S. JOURNAL

COULD COAL WASTE BE USED TO MAKE SUSTAINABLE BATTERIES?

Researchers eye coal ash as a possible source of critical minerals — and Southwest Virginia jobs

BUSINESS

In coal country, a new chance to clean up a toxic legacy

Waste from abandoned and bankrupt mines has contaminated more than 12,000 miles of waterways. Now states are looking at how to extract critical elements from those waters to try to offset the high cost of cleanup.

MID-APPALACHIAN CORE-CM PROJECT: ACID MINE DRAINAGE TREATMENT

Randomly collected AMD sludge vs. preconcentrate

	BP P1	. SL	A34 F	IPC
	mg/kg		mg/kg	$\sim /$
Al	98,549	19.8%	92,301	23.7%
Ca	38,906	7.8%	35,386	9.1%
Со	204	0.0%	7,221	1.9%
Fe	35,288	7.1%	1,746	0.4%
Mg	54,555	11.0%	8	0.0%
Mn	7,177	1.4%	67,072	17.2%
Ni	322	0.1%	7,182	1.8%
Si	261,920	52.6%	132,593	34.0%
Zn	549	0.1%	24,619	6.3%
TREE	<mark>6</mark> 59	0.1%	22,142	5.7%
All	498,129	100.0%	390,272	100.0%

Critical Minerals Policy Developments--WV

HB 4003: any party that treats any mine drainage may derive "commercial benefit" from any elements or other byproducts of the treated material. Passed during 2022 Legislative Session by 91-7 vote.

 Meant to encourage treatment of acid mine drainage problems and clarify ownership of REEs/critical minerals

Did Not Pass: HB 4025: 5 yr. exemption from severance tax for all extraction of REEs by any mining process (normally 4% of gross value of natural resource production).

3. Why the Geology Matters

MRCSP Region - Submissions - EDX (doe.gov)

Subsurface geology for carbon storage in part of the Midwest Regional Carbon Sequestration Partnership Region: Central Indiana to West Virginia

(dashed where inferred)

Bi

Textbook horst and graben formation

1. Layered rock units

1400

Ē 1200

1000

800

400

ã 600

Trek Through Time Cambrian Period 541-485 million years ago

Courtesy of Deep Time Maps produced by Colorado Plateau Geosystems, Inc.

PALEOZOIC ERA 541-252 million years ago

disposal near Gary, indiana (west of South Bend on Incatton map), and is one of the primary potential carbon stocage intervasia in the region (Barnes et al., 2009; Mediae and Rusp, 2012; Sminchak, 2012; NETI, 2016). The Mount Simon Sandstore thins as it shallows toward the Gammas Priori in western Orko, and is considue to the

needed. Note information regarding CO₃ storage and enhanced of and gas recovery opportunities in the region are available at the MRCSP vectories (mrcsp.org), and in published reports summarities mesearch (Wickstrom et al., 2005; Riley et al., 2010; Battelle, 2011b;

H. Sarper, S. K. Start, S. S. Sara, F.A. McDonald, J.M., Skoher, E.R., Zady, S.P., Weile, J.G. and Howet, E., 2011, Geologic assessment of the Oxio Geological Survey CO, No. 1 will in Tencenware County and surrounding violatly: Ohio Department of Matural Resources. Division of Geological Survey: Coan-File R.

Southeast

AEP Mountaineer New Haven, WV Injection Test

Rose Run Sandstone 7,772 — 7,782 ft.

Deep Cambrian Section

- Abrupt thickening in Rome Trough; up to 20K ft. depth
- Thousands of feet of limestone, dolomite, and shale
- Coarser sands present (Basal Sand, Rose Run), and can be thick, but are poorly understood.
- Areas of hydrothermal mineralization in dolomites (Copper Ridge)

Exxon Gainer-Lee Calhoun County, WV 15,250 ft. 200x magnification

Trek Through Time Ordovician Period 485-444 million years ago

PALEOZOIC ERA 541-252 million years ago

Courtesy of Deep Time Maps produced by Colorado Plateau Geosystems, Inc.

Utica/Point Pleasant: Metalliferous Black Shale?

Trek Through Time Silurian Period 444-419 million years ago

PALEOZOIC ERA 541-252 million years ago

Courtesy of Deep Time Maps produced by Colorado Plateau Geosystems, Inc.

EON	ERA	PERIOD	EPOCH	MILLIONS OF YEARS AGO	TECTONIC EVENTS AFFECTING NORTHEAST NORTH AMERICA	IMPORTANT GEOLOGIC EVENTS
		Quaternary	Pleistocene	 		Advance and retreat of last continental ice
	or longing		Miocene	5		
	CENOZOIC	Tertiary	Oligocene	24		
			Palenocene	57-		
		1	T destroyes.	66-		Development of passive continental margin
		Cretaceous	Late	97		
			Early			
	MESOZOIC		Late	144-	i.	Atlantic Ocean continues to widen
	MEGOLOIG	lang 1	Late	163-	arg	Initial operand of the Atlantic Ocean
		Jurassic	Middle	187-	N.	Initial operange or the relative orean
		1	Early		sive	
			Late	190-	- S	
0		Triassic	Middle	230	0	
× ·		To story	Early	240	thin	
N			Late		R	Massive erosion of Paleozoic rocks
RO		Permian	Early	256	1	AlleghanenOrogeny caused by
ANE		Pennsylvania	n	286		///Africa along transform margin
HH		Mississippian		320		
			Late	360		Erosion of Acadian Mountains
		Douonian	Middle			Acadian Orogeny caused by
	PALEOZOIC	Devonian	Early	415	u.	Avalon and closing of remaining part of lapetus Ocean
		Ollucian	Late	421	lisit	Evaporite basins; salt and
		Sliunan	Early		Col	Allogin or framer
			Late	438		Erosion of Taconic Mountains; Queenston
		Sec. 1.	Middle	458-	ati	Delta forms 'Taconic: Orogeny caused by
		Ordovician			mo	lapetus Ocean and collision
			Early	400	uc usi	between North America and volcanic Island arc
			Late	490	lisic	
		5. 20 1	Middle	500	Col	
		Cambrian	Early	510	uction	lapetus passive margin forms
AN					rgin Suba Conti	Rifting and initial opening of lapetus Ocean
RECAMBRI					Rifting Passive Ma	Erosion of Grenville Mountains Grenville Orogeny, granite and anorthosite intrusions Subduction and volcanism
<u>م</u>				1300	1	Sedimentation, Voicamiam

depositional processes are presented on the right. (modified from *Geologic History of New York*)

(dashed where inferred)

Tuscarora Sandstone Clay County, WV Silurian Storage Targets: Tuscarora & Newburg Sandstones Appalachian Ethane Storage Hub (ASH)

Newburg

Gross Isopach Map - Apparent Thickness Contour Interval = 5 feet (ft)

Salina F4 Salt Marshall County, WV

Salina F4 Salt

- Salts are interbedded with other rocks, but can attain thicknesses over 100'
- Forms impermeable seal
- Salt dissolution caverns offer storage options for purity products
- Some Critical Minerals in salt, most embedded in rock material

Trek Through Time Devonian Period 419-359 million years ago

Courtesy of Deep Time Maps produced by Colorado Plateau Geosystems, Inc.

PALEOZOIC ERA 541-252 million years ago

EON	ERA	PERIOD	EPOCH	MILLIONS OF YEARS AGO	TECTONIC EVENTS AFFECTING NORTHEAST NORTH AMERICA	IMPORTANT GEOLOGIC EVENTS
		Quaternary	Pleistocene	9.01-		Advance and retreat of last continental ice
	05107010		Miocene	5		
	CENOZOIC	Tertiary	Oligocene	-24		
			Palenocene	57-		
		0	Late	-66		Development of passive continental margin
		Cretaceous	Early.	-3/		L
	MESOZOIC		Late	144-	in the	Atlantic Ocean continues to widen
		1.000	Midella	163-	larg	Initial opening of the Atlantic Ocean
		Jurassic	milouid	187-	2	
			Early		Siv	
			Late	190-	Sec	
U		Triassic	Middle	230-	6	
ō			Early	245	Sittin	Alexandre services of Delevise is easily
Ň		land to the	Late	256	æ	Massive erosion of Paleozoic rocks
RO		Permian	Early	286		AlleghanknOrogeny caused by oplision of North American and
Z		Pennsylvania	2			 A Values along transform margin
A				320-		
H		Mississippian		200		
			Late	500		Erosion of Acadian Mountains
		Devonian	Middle			Acadian Orogeny caused by collision of North America and
	DAL FOZOIO	Contraction of the second	Early			Avalon and closing of remaining
	PALEOZOIC		Late	415-	iou	Evaporile basins; salt and
		Silurian	Eadly	-421-	othis	gypsum deposited
			Lany	438-	Ŭ.	
		1 million 10 million 1	Late	458-	tion	Delta forms "Taconic: Oropeny caused by
		Ordovician	Middle		ma	closing of western part of
		1.	Early		stor	between North America and
			Late	490-	ansion	volcanic island arc
		1	Middle	- 500-	ottis	
		Cambrian	Maddie	-510-	0	
		oumonum	Early		duction	lapetus passive margin forms
RIAN					largin Sub Con	Rifting and initial opening of lapetus Ocean
RECAMBI					Passive M	Erosion of Grenville Mountains Grenville Orogeny, granite and anorthosite intrusions Subduction and volcanism
A				1300	1	Sedimentation. volcanism

Note: Geologic time is presented on the left. Major tectonic events and their effect on depositional and po depositional processes are presented on the right. (modified from *Geologic History of New York*)

Subsurface geology for carbon storage in part of the Midwest Regional Carbon Sequestration Partnership region: Southern Michigan to West Virginia

Nytray 8, Soluta, 6, Fars, 57, Distorted, JA, Leis, PD, Sallh, LS, Nytray 8, Soluta, 6, Riey RA, and Barnool, MT, 208, A pectopo pay book for Tomon-Resc Nove Appendix Salo explorator, U.S. Department of Newsy DDR Availability of the Providence of Solution of Solution (Salo).

Riley, R.A., Spane, F.A., McDonald, J.M., Studiet, E.R., Zicty, S.F. 9, and Hovat, E., 2011, Ocologic assessment of the Otic Technologic

X: 0 in Y: 0 in

State Last

Marcellus Shale: The Role of Organics

Figure 5-14. Spatial distribution of average TOC in the Marcellus Shale interval from calculated P50 well log curve data. The blue outline is the Marcellus assessment area.

- Organic-Rich shales are found throughout the Devonian section
- Prolific gas reservoir in the Appalachian Basin
- CO₂ attracted to organic particles, thereby releasing methane
- Potential for storage in depleted/underpressured shale
- Potential for CO2 enhanced gas/NGL recovery
- Potential for Critical Minerals (e.g. Vanadium) in well cuttings

Devonian Sandstones: CO₂ EOR

From Whieldon & Eckard, 1963

Trek Through Time Carboniferous Period 359-299 million years ago

Courtesy of Deep Time Maps produced by Colorado Plateau Geosystems, Inc.

PALEOZOIC ERA 541-252 million years ago

PENNSYLVANIAN GEOLOGIC SETTING

Correia and Murphy, 2020

PALEOCLIMATE & DEPOSITIONAL CONTROLS

Brezinski and Kollar, 2011

WHY UNDERCLAYS?

- Relatively thick, mappable units (10s of ft.)
- Potential for REE, lithium, other CMs (gallium; hafnium)
- Accessible in mines, mine face-ups and surface exposures

- Legacy production (coal, refractory) and associated datasets
- Extraction and processing potential of REEs as ion-adsorption clays
- Traditional waste stream; potential for beneficial reuse

The average Total Rare Earth Element (REE) contents of 63 West Virginia coal beds on a parts-per-million (mg/kg) whole-coal basis. The coal beds are plotted on in stratigraphic order against the various stratigraphic nomenclatures. The REE totals are binned into Light REEs (La thru Sm) and Heavy REEs (Eu thru Lu).

WV Coal Legacy Data

EARTH MRI AIRBORNE GEOPHYSICAL STUDY

Photos Courtesy of Alex Demas, USGS

CORE-CM INITIATIVE

USDOE CORE-CM: Identifying Critical Mineral Resources in Unconventional Sources

Holz Dam, South Charleston, Kanawha County, ID # 03902

Height: Max Storage: Dam Safety Act Certificate of Approval: DEP Inspection Date: Hazard Potential Classification: Condition (NID Criteria): Owner: 225 feet 1,280 acre-feet Issued 01/22/1996 03/05/2009 1 - High Satisfactory Dow Chemical Company

The Holz Dam is composed of two embankments to create an impoundment between two natural hillsides. The larger embankment is southwest of the reservoir and the smaller is northeast of the reservoir.

West Virginia **Geological & Economic Survey**

Critical Minerals

Point ID Search *Coal Sample # Search* *Search by Coal Seam* *Downloads*

Downloads - Click link to download data type

WVGES Coal Samples

- Coal Sample Header Data
- Trace Element Data
- Major Element Data

WVGES Clay Samples

High Alumina Clays Data

🗴 🔒 🍤 - 🗟 - 📼

FILE	HOME	INSERT	PAGE LAYOUT	FORMULA	.S DATA	REVIEW	V VIEW																Jessica Moo
Paste	K Cut È Copy →	Dialog	• 11	A A		87 -	📴 Wrap Text	Gener	ral 0/ *	▼ €.0 .00	Conditional	Format as	Normal	Bad Explanatory	Good	Neutral	Calculation	* E	sert Delete	Format	∑ AutoSum ▼ Fill ▼	Sort & Find &	
c	Format Pain Iipboard	iter D 1	• Font	<u>⊻* A</u> * ⊑	= = =	Aligni	ment	r pr	% *	.00 →.0 ⊮ī	Formatting *	Table 🔻		Sty	/les			₽	• • Cells	Ŧ	e Clear ₹ Ed	Filter - Select -	

A2 \bullet : \times \checkmark f_x 440

	A B	С	D	E	F	G	Н	I J	K	L	M	N	0	P	Q	R S	Т	U	V	V	X
1	SAMPLE NUMBE POINT ID	COAL SEAM NAME	E STATE	COUNTY	QUAD	UTMN	UTME	SURFACE ELEVATION (USGS ID N	UMBER DATE SUBMITTED	REPORTING BASIS	ASH USGS WEIGHT	ASH WVGS WEIGHT A	NTIMONY ARS	ENIC I	BARIUM E	BERYLLIUM BISMUTH	BORON	BROMINE	CADMIUM	CERIUM CES	JUM I
2	440 16-078	EAGLE	West Virginia	Kanawha	Dorothy	4205441.08	465202.78	1432 170189	6/28/1974	Element in High Temperature Ash	7.9	3.35	68.72	89.6	3540.64	165.23	236	6		472	
3	440 16-078	EAGLE	West Virginia	Kanawha	Dorothy	4205441.08	465202.78	1432 D170189	6/28/1974	Element in Whole Coal			2.3	3	118.5	5.53	7.5	8		16	
4	441 16-078	EAGLE	West Virginia	Kanawha	Dorothy	4205441.08	465202.78	1432 170188	6/28/1974	Element in High Temperature Ash	5.6	5.09	11.78	19.6	1649.76	54.99	110)	1.1	220	
5	441 16-078	EAGLE	West Virginia	Kanawha	Dorothy	4205441.08	465202.78	1432 D170188	6/28/1974	Element in Whole Coal			0.6	1	84	2.8	5.6	6	0.056	11	
6	442 16-082	FIRE CLAY	West Virginia	Kanawha	Eskdale	4210035.76	461250.97	1524.17 170190	7/10/1974	Element in High Temperature Ash	12.2	10.89	15.62	45.9	1120.8	11.21	78.5	5			
7	442 16-082	FIRE CLAY	West Virginia	Kanawha	Eskdale	4210035.76	461250.97	1524.17 D170190	7/10/1974	Element in Whole Coal			1.7	5	122	1.22	8.5	5			
8	444 16-076	EAGLE	West Virginia	Kanawha	Belle	4223110.67	450043.86	549/170187	6/27/1974	Element in High Temperature Ash	6.9	16.48	1.82	12.1	293.08	2.93	125.6	6		84	
9	444 16-076	EAGLE	West Virginia	Kanawha	Belle	4223110.67	450043.86	549 D170187	6/27/1974	Element in Whole Coal			0.3	2	48.3	0.48	20.7			14	
10	445 16-076	EAGLE	West Virginia	Kanawha	Belle	4223110.67	450043.86	549/170186	6/27/1974	Element in High Temperature Ash	8.9	9.13	4.38	219.1	975	29.25	292.5	5			
11	445 16-076	EAGLE	West Virginia	Kanawha	Belle	4223110.67	450043.86	549 D170186	6/27/1974	Element in Whole Coal			0.4	20	89	2.67	26.7				
12	498 17-080	POWELLTON	West Virginia	Kanawha	Montgomery	4233029.4	471799.38	614 190630	9/5/1974	Element in High Temperature Ash	7.2	8.1	8.89	181.4	675.34	49.76	239.5	333	0.675	136	2.5
13	498 17-080	POWELLTON	West Virginia	Kanawha	Montgomery	4233029.4	471799.38	614 190630	9/5/1974	Element in Whole Coal			0.72	14.7	54.72	4.03	19.4	27	0.055	11	0.2
14	499 17-044	WINIFREDE	West Virginia	Kanawha	Quick	4235085.92	458560.25	943.98 170194	8/20/1974	Element in High Temperature Ash	9.3	10.79	5.56	18.5	431.02	17.24	129.3	}			
15	499 17-044	WINIFREDE	West Virginia	Kanawha	Quick	4235085.92	458560.25	943.98 D170194	8/20/1974	Element in Whole Coal			0.6	2	46.5	1.86	14				
16	500 17-084	NO.2 GAS	West Virginia	Kanawha	Montgomery	4229768.97	469788.6	618 190687	9/5/1974	Element in High Temperature Ash	9.1	10.13	5.82	78.9	880.09	8.8	269.4	286	0.431	227	3
17	500 17-084	NO.2 GAS	West Virginia	Kanawha	Montgomery	4229768.97	469788.6	618 190687	9/5/1974	Element in Whole Coal			0.59	8	89.18	0.89	27.3	3 29	0.044	23	0.3
18	501 17-070	NO.2 GAS	West Virginia	Fayette	Gauley Bridge	4233547.28	481138.57	808 190623	9/4/1974	Element in High Temperature Ash	5.6	8.1	11.35	44.4	829.37	32.48	269.5	321	0.76	123	7.4
19	501 17-070	NO.2 GAS	West Virginia	Fayette	Gauley Bridge	4233547.28	481138.57	808 190623	9/4/1974	Element in Whole Coal			0.92	3.6	67.2	2.63	21.8	3 26	0.062	10	0.6
20	502 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109/170193	7/25/1974	Element in High Temperature Ash	4.8	3.8	31.56	26.3	1893.41	37.87	126.2	1	1.893	252	
21	502 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109 D170193	7/25/1974	Element in Whole Coal			1.2	1	72	1.44	4.8	8	0.072	10	
22	503 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109/170192	7/25/1974	Element in High Temperature Ash	8.1	5.52	16.3	90.6	1467	10.27	146.7				
23	503 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109 D170192	7/25/1974	Element in Whole Coal			0.9	5	81	0.57	8.	1			
24	504 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109/170191	7/25/1974	Element in High Temperature Ash	4.8	6.56	6.1	228.7	1464	7.32	73.2	·		146	
25	504 17-006	POWELLTON	West Virginia	Fayette	Pax	4201233.24	471785.32	2109 D170191	7/25/1974	Element in Whole Coal			0.4	15	96	0.48	4.8	8		10	
26	505 17-066	STOCKTON	West Virginia	Kanawha	Montgomery	4220140.48	467427.63	1564/170196	8/29/1974	Element in High Temperature Ash	17.5	18.04	2.77	66.5	484.96	9.7	48.5)			
27	505 17-066	STUCKTON	West Virginia	Kanawha	Montgomery	4220140.48	467427.63	1564 D170196	8/29/19/4	Element in Whole Coal			0.5	12	87.5	1.75	8.8	8			
28	506 17-062	CUALBURG	West Virginia	Kanawha	Cedar Grove	4223888.07	466680.86	1229.467170195	8/28/1974	Element in High Lemperature Ash	13.6	15.6	3.85	12.8	261.6	8.72	6			1/4	
29	506 17-062	CUALBURG	West Virginia	Kanawha	Cedar Grove	4223888.07	466680.86	1229.46 D170195	8/28/1974	Element in Whole Coal			0.6	2	40.8	1.36	9.5			27	
30	507 17-064	CUALBURG	West Virginia	Kanawha	Montgomery	4223065.2	467442.8	1282 190621	8/28/1974	Element in High Temperature Ash	7.2	10.35	3.96	8.7	326.89	21.56	132.1	1 222	0.473	193	3.9
31	507 17-064	COALBURG	West Virginia	Kanawha	Montgomery	4223065.2	467442.8	1282 190621	8/28/1974	Element in Whole Coal			0.41	0.9	33.84	2.23	13.7	23	0.049	20	0.4
32	508 17-068	COALBURG	West Virginia	Kanawha	Eskdale	4219744.01	465005.09	1369.38 190622	8/29/1974	Element in High Temperature Ash	7.3	4.03	17.13	22.3	1685.06	74.29	561.7	645	0.544	323	7.4

WVGES_Trace_Element_Data - Excel

? 🗹 –

In Summary: Carbon Management

- Recent policy developments in WV provide a strong foundation for carbon storage
- As CCS gains traction in the Appalachian Basin, industry can leverage knowledge gained from CCUS operations in the Illinois/Michigan basins plus in-basin drilling expertise and highresolution subsurface information gained from unconventional shale exploration and production
- Many data gaps remain, especially with the deep Cambrian and Ordovician section in the Rome Trough. Multiple deep stratigraphic test wells and analyses are necessary
- IIJA and IRA both offer significant research funding opportunities

In Summary: Critical Minerals

- West Virginia holds significant and unique potential for critical minerals
- Many are hosted in the coal measures and are observed in elevated volumes in clay-rich beds above, below, or between the coal beds
- Enrichment observed over broad areas, but vertical variation can be significant, even within a given unit
- Potential also exists in organic shales and units exposed to hydrothermal mineralization
- Waste products, including AMD, gob, coal ash may have potential for beneficial reuse.

THANK YOU!

Jessica Moore WV Geological & Economic Survey 1 Mont Chateau Rd Morgantown, WV 26508 jmoore@wvgs.wvnet.edu 304-594-2331